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Abstract 
In this paper, we implement energy equation coupled with viscous Burgers’ 
equation as a mathematical model for the estimation of thermal pollution of 
river water. The model is a nonlinear system of partial differential equations 
(PDEs) that read as an initial and boundary value problem (IBVP). For the 
numerical solution of the IBVP, we investigate an explicit second-order Lax- 
Wendroff type scheme for nonlinear parabolic PDEs. We present the numer-
ical solutions graphically as a temperature profile, which shows good qualitative 
agreement with natural phenomena of heat transfer. We estimate the thermal 
pollution of water caused by industrialization on the bank of a river. 
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1. Introduction 

We study the energy equation together with the viscous Burgers’ equation. The 
energy equation can reveal the thermal pollution in river water [1]. We consider 
the nonlinear system of equations as a model equation and investigate numerical 
solutions with the initial conditions and boundary conditions to make us under-
stand the thermal pollution distribution through an open medium like rivers, 
lakes, and water sources [2]. Thermal pollution occurs with an increase in water 
temperatures in any water source. This pollution in water caused due to human 
activities such as electric power plants, steel melting factories, and boilers from 
industries that release a large amount of heat water [3]. The water temperature 
increases the decline of oxygen content in water. These cause difficulty for aqua-
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tic life, which cannot tolerate high temperatures [4]. Most sponges, mollusks, 
and shrimps die at temperatures above 27 degrees Celsius. In addition, the 
energy equation analyses the flow in an autoclave for curing aerospace parts us-
ing an incompressible flow assumption. It has wide applications in other discip-
lines in a liquid rocket engine, liquid fuel, and oxidizer used as a coolant in var-
ious components such as the bearing in the oxidizer and fuel turbopump. Also, 
the flow in an autoclave for curing aerospace parts can be analyzed using an in-
compressible flow assumption. It is widely involved in generating power from 
conventional fossil fuels, nuclear, and geothermal energy sources [5] [6]. 

Several numerical methods are presented in the literature to solve Burgers’ 
equation and energy equation. Agusta and Bamingbola [7] surveyed the numer-
ical treatment of the mathematical model for water pollution using the implicit 
centred difference in space and a forward difference method in time for the 
evaluation of the generalized transport equation. Changiun Zhu, Liping Wa and 
Sha Li [8] made a numerical simulation of river water pollution by using the 
grey differential model. Jima, Shiferaw and Tsegaye [9] solved coupled viscous 
Burgers’ equation with appropriate initial and boundary conditions applying the 
differential quadrature method based on Fourier expansion basis. A numerical 
method was investigated by P.D. Lax and B. Wendroff [10] for the solution to the 
system of hyperbolic conservation laws. Jiequan Li [11] investigated Lax-Wendroff 
type scheme for hyperbolic problems. We use an explicit second-order Lax- 
Wendroff type scheme [12] for numerical solutions of energy equation and 
viscous Burgers’ equation, which are nonlinear parabolic PDEs. Here the first-order 
terms are discretized in second-order same as Lax-Wendroff scheme of hyper-
bolic PDE. 

In Section 2, we present the governing equation to analyse thermal pollution. 
In Section 3, we apply Lax-Wendroff type scheme to obtain a numerical solution 
of Viscous Burgers’ equation and energy equation respectively as an IBVP using 
Neumann boundary conditions [13] [14]. In Section 4, we implement the nu-
merical scheme for the governing equations to simulate thermal pollution in 
water with respect to different times and discrete positions in space. 

2. The Governing Equations 

We investigate the thermal pollution in water using well-known energy equation 
and viscous Burgers’ equation. The system of PDEs is as follows 
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diffusion term for energy equation with heat diffusion co-efficient α . ( ),u x t  
and ( ),T x t  are the velocity of flow the water temperature respectively.  

Energy equation is a non-linear equation and its analytic solution is not yet 
available. We consider the model equation as an IBVP for numerical solution by 
setting the initial conditions ( ) ( )0,0u x u x=  and ( ) ( )0,0T x T x= , left boun-
dary conditions ( ) ( ),L Lu x t u t=  and ( ) ( ),L LT x t T t= . Neumann condition is 
considered for right boundary. Burgers’ equation provides the velocity of the 
fluid flow and the energy equation present temperature profile of water by which 
we interpret thermal pollution in water. 

3. Numerical Method for Governing Equations 

In this section, we discuss the numerical scheme for Equation (1). A second-order 
discretization for viscous Burgers’ equation and energy equation is performed, 
which is known as Lax-Wendroff type scheme [12]. For second-order Lax-Wendroff 
type scheme of the viscous Burgers’ equation, we discretize the inviscid part of 
the equation in half-time step Lax-Friedrich scheme then substitute those values 
in half-time step Leapfrog scheme and combine them with second-order central 
discretized viscid part of Burgers’ equation. Again, for second-order Lax-Wendroff 
type scheme [12] of energy equation, we discretize the convective part of the eq-
uation in half-time step Lax-Friedrich scheme then substitute those values in 
half-time step Leapfrog scheme and combine with second-order central discre-
tized diffusive part of energy equation. 

3.1. Lax-Wendroff Type Scheme for Burgers’ Equation 

We take forward discretization in time derivative and first order space deriva-
tive, for Lax-Friedrich scheme and the discrete equation for inviscid part of 
Burgers’ equation 
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which is Lax-Friedrich scheme. Now take half-time step for (2) and we have 
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Half-time step Leapfrog scheme for inviscid part of Burgers’ equation is 
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Therefore, the discrete form of viscous Burgers’ equation comes from (5) and 
the central difference of second-order space derivative. Then the discrete equa-
tion reads as 
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which the Formula (7) is the Lax-Wendroff type scheme for viscous Burgers’ 
equation. 

3.2. Lax-Wendroff Type Scheme for Energy Equation 

We take forward discretization in time derivative and first order space deriva-
tive, for Lax-Friedrich scheme and the discrete equation for convective part of 
energy equation 
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which is Lax-Friedrich scheme. Take half-time step for (8) and we get 
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Half-time step Leapfrog scheme for convective part of the energy equation is 
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Therefore, the discrete form of energy equation comes from (11) and the cen-
tral difference of second-order space derivative. Then the discrete equation reads 
as 
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which the Formula (13) is the Lax-Wendroff scheme for energy equation. 
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4. Results and Discussions 

We apply the numerical scheme to estimate the thermal pollution in a river at 
different times and individual points of water bodies. The computational result 
verifies the qualitative behavior of the solution of the energy equation for vary-
ing of the parameters. We consider initial flow velocity  

( ) ( )0 0.05 sin 0.05 0.05u x x= ∗ − +  with velocity in left boundary ( ) 0.05Lu t =  
m∙s−1 and the viscosity of water flow is considered υ = 0.05 m2/s. The initial 
temperature in river water is considered ( ) ( )0 0.05 exp 0.05 20T x x= ∗ − + ; the 
temperature in left boundary is ( ) 40 CLT t =  . Both right boundaries are gener-
ated by Neumann boundary conditions. The heat diffusivity in water is α = 0.06 
m2/s. The total execution domain is 100 m and simulation time is 20 minutes. 
The results are shown in following figures. 

From Figure 1, we observe that at time t = 1 min. the thermal pollution is not 
clear, at time t = 5 min., the temperature is transferred, increased with time and 
the spread out of thermal pollution is noticeable; at time t = 20 min, the water 
temperature is increased all along the boundary of the river. We notice, thermal 
pollution is moving to boundary with time and increasing the pollution rate. 
Figure 2 shows the graphical scenario of thermal pollution in water after t = 1 
hour, which is much alarming for bio-diversity. 

In Figure 3, the temperature profile has shown with respect to space. The 
curved lines in the above figure shows the change of temperature at x = 20, 40, 
60, 80 and 100 meters. From observation we can say, the thermal pollution in 
river water is increasing with distance. 

In Figure 4, we consider different viscous coefficients υ = 0.005, 0.05 and 0.14 
m2/s for fixed heat diffusion rate α = 0.06 m2/s. From figure we notice that as the 
viscous coefficient increases the thermal pollution increases along the boundary, 
which reflects the well-known natural phenomena of viscosity in water. 

In Figure 5, we consider different heat diffusion rates α = 0.03, 0.06 and 0.14 
m2/s for fixed viscous coefficient υ = 0.05 m2/s. We observe, for higher heat  
 

 

Figure 1. Temperature profile for Lax-Wendroff type Scheme at different time. 
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Figure 2. Temperature profile for Lax-Wendroff type Scheme at t = 1 hour. 
 

 

Figure 3. Temperature profile for Lax-Wendroff type scheme at different position. 
 

 

Figure 4. Temperature distribution for different viscous co-efficients at α = 0.06 m2/s. 
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Figure 5. Temperature distribution at different heat diffusion co-efficients at υ = 0.05 
m2/s. 
 
diffusion rate temperature spreads out, as α increases thermal pollution increases 
with respect to time along the boundary. 

From the above discussion, it can be estimate that how far the effect of ther-
mal pollution exists in a river and can idea about the region of river, where the 
bio-diversity being affected.  

5. Conclusion 

In this paper, we have discussed the energy equation coupled with the viscous 
Burgers’ equation as a model to estimate the thermal pollution in river water. 
We have investigated the numerical solution for the Lax-Wendroff type scheme, 
which is an explicit second-order scheme for nonlinear parabolic PDEs. We have 
done the discretization of first-order terms of energy equation and viscous 
Burgers’ equation are in second-order which same as the Lax-Wendroff type 
scheme of hyperbolic PDE. We have presented the numerical solutions qualita-
tively by varying the values of the viscous and heat diffusion coefficients. The 
representations showed a good qualitative agreement with the well-known beha-
vior of the solution of the energy equation. The results have shown that the 
thermal pollution in water is spreading as we have been varying the convection 
and thermal diffusivity with respect to time and space. The profile of thermal 
pollution in water has been observed at different times, points of space, viscosity, 
and heat diffusivity. In the estimation of thermal pollution in river water, the 
second-order Lax-Wendroff type scheme has shown good qualitative agreement 
with natural phenomena of heat transfer. 

Acknowledgements 

I would like to thank my supervisor Dr. Laek Sazzad Andallah and colleague 
Khandaker Md. Eusha-Bin-Hafiz for supporting the entire work. 

https://doi.org/10.4236/ajcm.2022.123020


P. Biswas et al. 
 

 

DOI: 10.4236/ajcm.2022.123020 313 American Journal of Computational Mathematics 
 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere Pub-

lishing Corporation, New York, 214. 

[2] Saleem, M., Hossain, M.A., Saha, S.C. and Gu, Y. (2014) Heat Transfer Analysis of 
Viscous Incompressible Fluid by Combined Natural Convection and Radiation in 
an Open Cavity. Mathematical Problems in Engineering, 2014, Article ID: 412480. 
https://doi.org/10.1155/2014/412480  

[3] Singh, M.R. and Gupta, A. (2016) Water Pollution-Sources, Effects and Control. 
Centre for Biodiversity, Department of Botany, Nagaland University. 

[4] Wang, X.L., Han, J.Y., Xu, L.G. and Zhang, Q. (2010) Spatial and Seasonal Varia-
tions of the Contamination within Water Body of the Grand Canal, China. Envi-
ronmental Pollution, 158, 1513-1520.  
https://doi.org/10.1016/j.envpol.2009.12.018  

[5] Bejan, A. (2013) Convection Heat Transfer. John Wiley & Sons, Hoboken. 
https://doi.org/10.1002/9781118671627  

[6] Sa, J.-Y., and Dochan, K. (1997) A Numerical Method for Incompressible Flow with 
Heat Transfer.  

[7] Agusto, F.B. and Bamigbola, O.M. (2007) Numerical Treatment of the Mathemati-
cal Models for Water Pollution. Journal of Mathematics and Statistics, 3, 172-180. 
https://doi.org/10.3844/jmssp.2007.172.180  

[8] Zhu, C.J., Wu, L.P. and Li, S. (2010) A Numerical Simulation of Hybrid Finite Ana-
lytic Method for Groundwater Pollution. Advanced Materials Research, 121, 48-51.  
https://doi.org/10.4028/www.scientific.net/AMR.121-122.48  

[9] Jima, M., Shiferaw, A. and Tsegaye, A. (2018) Numerical Solution of the Coupled 
Viscous Burgers’ Equation Using Differential Quadrature Method Based on Fourier 
Expansion Basis. Applied Mathematics, 9, 821-835.  
https://doi.org/10.4236/am.2018.97057  

[10] Lax, P. (1959) Systems of Conservation Laws.  
https://apps.dtic.mil/sti/citations/ADA385056  

[11] Li, J. (2019) Fundamentals of Lax-Wendroff Type Approach to Hyperbolic Prob-
lems with Discontinuities. Advances in Applied Mathematics and Mechanics, 11, 
38-49. https://doi.org/10.4208/aamm.2018.s02  

[12] Biswas, P. and Andallah, L.S. (2018) Higher Order Efficient Numerical Method for 
One Dimensional Heat Transfer Problem in Viscous Incompressible Fluid Flow. 
M.S. Thesis Work, Department of Mathematics, Jahanginagar University. 

[13] Hoffmann, K.A. and Chiang, S.T. (2000) Computational Fluid Dynamics Volume I. 
Engineering Education System, Wichita, USA. 

[14] Rahman, M.M. and Andallah, L.S. (2014) Simulation of Water Pollution by Finite 
Difference Method. International Journal of Research in Information Technology, 
2, 17-24.  

 
 

https://doi.org/10.4236/ajcm.2022.123020
https://doi.org/10.1155/2014/412480
https://doi.org/10.1016/j.envpol.2009.12.018
https://doi.org/10.1002/9781118671627
https://doi.org/10.3844/jmssp.2007.172.180
https://doi.org/10.4028/www.scientific.net/AMR.121-122.48
https://doi.org/10.4236/am.2018.97057
https://apps.dtic.mil/sti/citations/ADA385056
https://doi.org/10.4208/aamm.2018.s02

	Estimation of Thermal Pollution Using Numerical Simulation of Energy Equation Coupled with Viscous Burgers’ Equation
	Abstract
	Keywords
	1. Introduction
	2. The Governing Equations
	3. Numerical Method for Governing Equations
	3.1. Lax-Wendroff Type Scheme for Burgers’ Equation
	3.2. Lax-Wendroff Type Scheme for Energy Equation

	4. Results and Discussions
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

