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Abstract
The requirement for accelerated and quantitatively accurate screening of nuclear magnetic
resonance spectra across the small molecules chemical compound space is two-fold: (1) a robust
‘local’ machine learning (ML) strategy capturing the effect of the neighborhood on an atom’s
‘near-sighted’ property—chemical shielding; (2) an accurate reference dataset generated with a
state-of-the-art first-principles method for training. Herein we report the QM9-NMR dataset
comprising isotropic shielding of over 0.8 million C atoms in 134k molecules of the QM9 dataset
in gas and five common solvent phases. Using these data for training, we present benchmark results
for the prediction transferability of kernel-ridge regression models with popular local descriptors.
Our best model, trained on 100k samples, accurately predicts isotropic shielding of 50k ‘hold-out’
atoms with a mean error of less than 1.9 ppm. For the rapid prediction of new query molecules, the
models were trained on geometries from an inexpensive theory. Furthermore, by using a∆-ML
strategy, we quench the error below 1.4 ppm. Finally, we test the transferability on non-trivial
benchmark sets that include benchmark molecules comprising 10–17 heavy atoms and drugs.

1. Introduction

Nuclear magnetic resonance (NMR) is an indispensable tool in chemistry, biochemistry and biophysics. It is
fast, accurate, information-rich and non-destructive, making it the ideal technique for detecting or
describing chemical bonding scenarios. As easy and trivial have most NMR experiments become, it is still a
computationally expensive task to estimate NMR shielding tensors or coupling constants for large molecular
datasets [1, 2]. While molecules with heavy atoms demand incorporation of relativistic corrections to achieve
quantitative accuracy [3, 4], computational NMR spectroscopy without such subtle effects are routinely used
in organic chemistry [5–11]. For a comprehensive review on computational NMR refer to [12]. Recently,
Grimme et al [13] discussed the automated prediction of spin-spin coupled 1H NMR in various solvents by
accessing relevant conformers, to generate experimentally relevant NMR spectra, while Buevich et al [14]
employed computer-assisted structure elucidation algorithms and predicted NMR results to analyze
molecular geometries. Lauro et al [15] designed a protocol to identify stereoisomers using experimental and
predicted NMR data.

Amongst many ab initiosu quantum chemistry frameworks [16–20], gauge-independent atomic orbital
(GIAO) [21] is the most popular. Within the GIAO framework, Cartesian components of the NMR shielding
tensor, σq

ij, of a nucleus q is calculated as the second-order magnetic response property [22, 23]

σ
q
ij =

∂2E

∂Bi∂µ
q
j

, (1)
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where E is the electronic energy of the molecule, Bi is a component of the external magnetic field, and µ
q
j is

the jth component of the magnetic moment of the nucleus q. The isotropic shielding is defined as one-third
of shielding tensor’s trace, σiso = (σ11+σ22+σ33)/3. Comparison of predicted values of σiso with
experimental results is done by calculating its ‘shift’ using a standard reference compound
δ
q
iso = σreferenceiso −σ

q
iso [24].

1H and 13C are amongst the most commonly studied NMR-active nuclei. Accurate ab initio computation
of δ 13C requires methods such as coupled-cluster singles doubles [25], or spin-component-scaled MP2 with
a triple-zeta quality basis set to reach a mean error of< 1.5 ppm [1, 26], albeit incurring a cost which
prohibits the method’s applicability for high-throughput studies. Composite methods have been
proposed—analogous to the Gn thermochemistry methods [27]—that exploit the additivity in basis set and
correlation corrections to reach a greater accuracy [25, 28]. Another method involves tailoring
exchange-correlation functionals of Kohn–Sham density functional approximations such as WC04 and
WP04 [29].

When relaxing the accuracy requirement—while retaining the generality—a density functional approach
that has received wide attention, particularly for NMR calculations of both 1H & 13C nuclei, is mPW1PW91
[30]. This method has been shown to provide good results for acetals [31], pyramidalized alkenes [32],
acetylenes, allenes, cumulenes [33, 34] and even natural products [5, 6]. The same approach has also been
used to model the 2D-NMR spectrum of exo-2-norbornanecarbamic acid [35]. Further, a multi-reference
standard approach [36] has shown consistent estimations of chemical shifts in solutions with a triple-zeta
basis set [37]. Thus, even though Flaig et al’s [26] benchmark study ranked the B97-2 functional high, next
only to the MP2 method, the consistency of mPW1PW91 has motivated several works including a recent
effort by Gerrard et al [38], where the authors applied mPW1PW91 with the 6-311G(d,p) basis set to
generate NMR chemical shielding and hetero-nuclear coupling constants of molecular components in
experimentally characterized organic solids.

While direct application of DFT is feasible for any query molecule, the questions that arise in chemical
compound space (CCS) explorations often concern property trends across large datasets, demanding
realistically rapid evaluation of the desired property. To this end, machine learning (ML) based statistical
inference, in combination with high-throughput ab initio computing, offers a viable alternative (see [39]).
This approach has received such widespread attention that a recent competition on the world-wide web,
Kaggle, for ML-aided prediction of NMR spectra [40] saw a participation of 2700 teams across the world. An
earlier proof-of-concept study discussed the feasibility of exploiting the local behavior of NMR chemical
shifts with ML to achieve transferability to systems that are larger than those used to train the model [41].
That work depended on a cut-off based local version of the Coulomb matrix (CM) descriptor [42]. Recently,
Gao et al [43] explored deep neural networks (DNNs) in their ‘DFT+ML’ model and achieved
mean-squared error of 2.10 ppm for 13C chemical shifts compared to experimental values. DNN has also
been employed for modeling electronic spectra [44–46]. Kernel-ridge regression (KRR) is another ML
method offering accuracies comparable to that of DNN for spectroscopy applications [47, 48]. However,
ML/deep learning may not be limited to single property applications when multiple properties can be
explored [44, 49, 50].

As for descriptors, successive improvements have been made by projecting the three-dimensional
molecular chemical structure into multidimensional tensors [51], four-dimensional hyper-spherical
harmonics [52], or a continuous representation such as the variant smooth overlap of atomic
positions—SOAP [53, 54]. The latter with Gaussian process regression [55] predicted chemical shifts with
root-mean-squared-error (RMSE) of 0.5/4.3 ppm for 1H/13C nuclei on 2k molecular solids, while with KRR
it was successful in predicting 29Si and 17O NMR shifts in glassy aluminosilicates across a wide temperature
range [56] comparable to fragment-based estimations [57].

The joint descriptor-kernel formalism of Faber, Christensen, Huang, and Lilienfeld (FCHL) uses an
integrated Gaussian kernel function accounting for three-body interactions in atomic environment yielding
highly accurate results for global molecular properties such as atomization energies [58]. Recently,
FCHL-based KRR has been applied to model 1H, 13C shifts and J-coupling constants between these two
nuclei for over 75k structures in the CSD [38]. For a test set, which was not part of training, the same study
noted mean absolute errors (MAE) of 0.23 ppm/2.45 ppm/0.87 Hz (RMSE: 0.35 ppm/3.88 ppm/1.39 Hz) for
δ 1H/δ 13C/1JCH, respectively.

Here, we present gas and (implicit) solvent phase mPW1PW91/6-311+G(2d,p)-level chemical shielding
for all atoms in the QM9 dataset [59] comprising 130 831 stable, synthetically feasible small organic
molecules with up to 9 heavy atoms C, N, O and F—henceforth denoted the QM9-NMR dataset. Initial
structures of the QM9 molecules are based on the SMILES descriptors from GDB17 chemical Universe. We
apply KRR-ML using training sets drawn from QM9-NMR benchmark control settings, and rationalize their
influence on the performance of large ML models using up to 100k training examples. It has been recently
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noted [60] that the∆-ML approach [61] facilitates better ML accuracies. Thus, with converged settings, we
provide benchmark learning curves for ML and∆-ML methods based on three local descriptors—CM,
SOAP and FCHL. Finally, we evaluate the transferability of the local ML models—trained only on QM9
molecules—to larger systems in non-trivial benchmark sets that include several drug molecules, a small
subset of GDB17 [62] with molecules comprising 10–17 heavy atoms and linear polycyclic aromatic
hydrocarbons (PAHs).

2. Methodology

Among popular ML frameworks, KRR is one of the most consistent and accurate [63] framework. In KRR
formalism, for a query entity (molecule or atom), q, a generic property p from a reference (experiment or
theory), is estimated as a linear combination of radial basis functions (RBFs a.k.a. kernel functions)—each
centered at one training entity. Values of these RBFs are calculated at q, then the distances between q and N
training molecules defined via their descriptors d is given as

pest(dq) =
N∑
t=1

ctk(|dq − dt|). (2)

The coefficients, ct , one per training datum, are obtained through ridge-regression by minimizing the
least-squares prediction error:

L = ⟨pref− pest|pref− pest⟩+λ⟨c|c⟩
= ⟨pref−Kc|pref−Kc⟩+λ⟨c|c⟩. (3)

The size of the kernel matrix isN ×N, each element defined in close analogy to the right side of equation (2),
Kij = k(||di − dj||), i and j going over N training elements, with || · || denoting a vector norm. Here, for the
choice of CM and SOAP descriptors, we used the Laplacian kernel depending on an L1 norm defined as
Kij = exp(−|di − dj|/ω), where ω defines the length scale of the exponential RBF. As shown in [64], optimal
solution to equation (3) amounts to solving the linear system:

[K+λI] c= preference. (4)

The second term in the r.h.s. of equation (3) is apparent in equation (4); if the definition of the descriptor
does not differentiate any two training entries, then K becomes singular and a unique solution to
equation (4) can only be found with a non-zero value for the regularization strength, λ. Both ω and λ
constitute hyperparameters in the model, that require a cross-validated optimization before out-of-sample
predictions. Any non-zero value of λ determined by cross-validation is an indication of the presence of
redundant training entries, either due to data-duplication or poor quality of the descriptor. As shown in
[65], in the absence of redundant training entries, λ can be set to zero and the learning problem translates to
solving Kc= preference. Alternatively, when linear dependencies may be anticipated—due to numerically
similar descriptor differences—rendering an off-diagonal element of K to be≈ 1, a finite λ= εmay be used
to shift the diagonal elements of K away from 1.0 and the lowest eigenvalue away from 0.0 thereby aiding
Cholesky decomposition.

Prior regularization, K is a covariance or dispersion matrix with all of its off-diagonal elements bound
strictly in the closed interval [0, 1] with unit diagonal elements. As per [65], we can estimate ω independent
of property by restricting K ij corresponding to the largest descriptor difference, Dmaxij , to 0.5, as in

ωmaxopt = Dmaxij / log(2). (5)

In the present study, we also explore the performances of the choices of ω based on Dmeanij and Dmedianij that
will differ from the value of ωopt based on Dmaxij depending on the diversity of the training set descriptors:

ωmeanopt = Dmeanij / log(2); ωmedianopt = Dmedianij / log(2). (6)

Later we show how these choices are in close agreement with ωopt values found by a scan to minimize the
error for a large hold out set. We also discuss how the kernel matrix constructed with ωmedianopt can be applied
to model NMR shieldings from gas and different solvent phases.

The prediction error of an ML model can be unconditionally quenched with increasing training set size
for a good choice of the descriptor; however, the exponential nature of the learning rate often necessitates an
increase in the model’s size by orders of magnitude. While the resulting surge in the computational cost
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Figure 1.∆-ML of NMR chemical shifts exemplified by benzene; the model is trained to predict property from a target-level
theory using as inputs atomic coordinates and the property from a baseline theory. The targetline and baseline shifts of benzene
were computed at mPW1PW91/6-311+G(2d,p)@B3LYP/6-31G(2df,p) and B3LYP/STO-3G@PM7 levels, respectively.

associated with the ML model’s execution speed is seldom prohibitive, training with examples of the order of
106 places too severe hardware restrictions. When such hardware limit is reached for training, further drop in
an ML model’s error can be attained by training on the deviation of the property from inexpensive, yet
qualitatively accurate baseline values in a∆-ML fashion [61]:

∆p(dbas.q ) = ptar.(dtar.q )− pbas.(dbas.q ). (7)

The ML problem now involves solving for Kc=∆p. For any new prediction,∆ is augmented with the
baseline:

pest.(dtar.q ) = pbas.(dbas.q )+
N∑
t=1

c ′t k(|d
bas.
q − dbas.t |) (8)

where c ′t is now obtained through ridge-regression by minimizing the property differences between target
and baseline. Figure 1 illustrates∆-ML for the modeling of NMR shifts with an example molecule. Often, for
any given molecule, the determination of minimum energy geometry at the target level incurs a greater
computational requirement than that is needed for the estimation of NMR shielding. In the∆-ML
framework, this problem can be alleviated by using atomic coordinates calculated at the same or a different
baseline level for the construction of descriptors. Hence, new predictions can be rapidly made using
structural information calculated at the baseline-level. In the present study, we use NMR properties
calculated with an inexpensive theory (B3LYP/STO-3G@PM7) as a baseline. The∆-ML model is trained on
the differences between the target (mPW1PW91/6-311+G(2d,p)@B3LYP/6-31G(2df,p)) and the baseline
(figure 1). For a new query, the model predicts the ‘∆’ to which calculated baseline value is added.

The formal requirements for a chemical descriptor have been discussed by others [53, 66–71]. Design of
structure-based molecular descriptors drew inspiration from the success of generic coordinates such as
atom-centered symmetry functions [72, 73]. Here, we explore CM [42], SOAP [53, 54, 74] and FCHL
(without alchemical correction) [58]. For modeling local properties such as NMR shielding, CM can be
truncated by a cutoff radius, rcut [41], but there is always the possibility of failing to establish injective
mapping between three dimensional molecular structure and the query property [75]. Hence, more robust
approaches include row-norm sorted CM or ‘bag-of-bonds’, [76–78]. Models based on all 3 descriptors show
similar prediction times. For a detailed account of solver and prediction times on a single run, see table S2.

3. Computational details

For training data in ML, we collected B3LYP/6-31G(2df,p)-level minimum energy geometries of 134k
molecules in the QM9 dataset from [59]. Those structures that have been reported to fragment during the
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Figure 2. Range of NMR shielding properties in the QM9-NMR dataset. (a) Element-wise distribution of the shielding (σ in
ppm) of all the nuclei in 131k QM9 molecules. (b) 13C chemical shifts (δ in ppm) for the QM9 molecules classified according to
hybridization. KDE stands for kernel density estimation.

geometry relaxation (3054 in total) were excluded in this study. NMR shielding tensors of selected stable
nuclei were calculated at the mPW1PW91/6-311+G(2d,p)-level in a single-point fashion within the GIAO
framework [79–81] using Gaussian-16 suite of programs [82]. In all DFT calculations, integration grid was
set to Ultrafine with a VeryTight SCF threshold. To use as a baseline property in∆-ML, we used NMR
shielding calculated at the B3LYP/STO-3G level with geometries optimized at the PM7 level, the latter done
with MOPAC [83]. 13C isotropic shielding tensors, σ, were converted to 13C chemical shifts, δ, using a
reference value for σ corresponding to that of tetramethylsilane (TMS), which was calculated in gas phase to
be 186.97 ppm. We have also computed shielding tensors for the entire 131k set with implicit modeling of the
solvents—carbon tetrachloride (CCl4), tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and
methanol—with the polarizable continuum model (PCM) [84]. This was achieved by invoking SCRF in
Gaussian-16 and specifying the solvent name and retaining default settings.

We have retained the same settings—mPW1PW91/6-311+G(2d,p)@B3LYP/6-31G(2df,p)—to calculate
the NMR shielding of benchmark molecules that we selected for validating QM9-based ML models. Initial
unrelaxed structures of the linear PAHs studied here have been taken from [85]. From the GDB17 dataset, we
have randomly selected eight subsets of molecules, each with 25 molecules comprising 10–17 heavy atoms
(200 in total). Further, we collected drug molecules present in the GDB17 dataset identified in [62, 86–88].
In addition, we also collected 12 somewhat larger drug molecules from [89]. The corresponding SMILES
strings of all these ‘validation’ molecules, when available, were converted to initial Cartesian coordinates
using the program Openbabel [90]. Initial coordinates of the 12 large drug molecules were created using the
Avogadro [91] program. All molecules have been subjected to preliminary geometry relaxation performed
with the force field MMFF94 [92]. We used the default settings in DScribe [93] and QML [94] to calculate
the SOAP descriptor and the FCHL kernel matrix, respectively. All ML calculations have been performed
using codes written in Fortran90 with interfaces to the SCALAPACK [95] numerical library.

4. Results and discussions

4.1. QM9-NMR dataset
For a systematic exploration of NMR properties across the QM9 CCS, QM9-NMR dataset was created as per
the procedures outlined in section 3. This dataset consists of data for stable 130,831 molecules amounting to
1 208 486 (1.3 M), 831 925 (832 k), 132 498 (132 k), 183 265 (183 k), 3 036 (3 k), NMR values for H, C, N, O,
and F nuclei, respectively. DFT-level NMR shielding of these elements (figure 2(a)) demonstrate the expected
range of values. In case of H, the most deshielded nucleus corresponds to the one from the cationic
ammonium ion (encountered in zwitterionic molecules), while the most shielded proton belongs to a
highly-strained secondary amine bonded to N. Methane offers the most shielded environment for 13C in
QM9, whereas the most deshielded C features in a highly strained multiply-fused-ring molecule. Similarly,
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for N, the most shielded nuclei comes from a strained tertiary amine, whereas for O it features in a strained
ring. Most deshielded N and O nuclei belong to a zwitterionic molecule.

Besides extrema, figure 2(a) also highlights the chemical diversity of the QM9 dataset. For C and H
atoms, majority of the NMR shielding parameters come from C(sp3)-H bonds, indicating QM9 to largely
comprise saturated organic molecules. Unsaturated molecules form a relatively smaller fraction of QM9 as
can be seen in its shielding distribution function (between 0 and 75 ppm for C, figure 2(b). N atom
distribution shows two sharp distribution peaks at about 200 and−35 ppm belonging to primary amine and
cyano groups, respectively. Most frequent O atoms consist of ether linkages, while F atoms show a
characteristic broad distribution around 250 ppm.

NMR shielding values for the entire dataset have also been calculated with continuum models of five
commonly used polar and non-polar organic solvents: acetone, CCl4, DMSO, methanol, and THF. Formally,
a polar solvent will result in a more deshielded environment. However, the influence of the solvent is
non-uniform across various C atoms in a molecule depending on the local environment of an atom in the
molecule. Other effects such as hydrogen-bonding, halogen bonding may further influence the chemistry of
the molecule resulting in unexpected chemical shifts. Thus, it is necessary to build a database comprising
NMR shielding tensors calculated at various solvent media. Here as a first step, we computed the shielding
values of the molecules in different solvents under a PCM framework. For a better description of the solvent
environment it is essential to go beyond continuum modeling by using micro-solvation models that account
for explicit solute-solvent interactions. The solvents were chosen to represent diverse environments:
non-polar, polar aprotic and polar protic. For any given 13C nucleus, the spread in the shielding values due to
the choice of the medium is at the most±4 ppm (figure S2) with minima and mean at 0 and 0.56 ppm,
respectively, suggesting most nuclei to be minimally influenced by the implicit solvent environment. Hence,
for ML predictions to differentiate the results from various phases, it is necessary that the models’ prediction
accuracy is much less than±4 ppm.

QM9-NMR dataset also contains B3LYP/STO-3G NMR shielding constants for all the 130 831 molecules.
Although the current ML study concerns itself with NMR shielding of the C-atom, the QM9-NMR dataset
can be used to model other nuclei as well. To facilitate such and other ab initio benchmark efforts, the entire
QM9-NMR dataset, comprising gas and solvent phase results, is now a part of the openly accessible MolDis
big data analytics platform [96], https://moldis.tifrh.res.in/data/QM9NMR.

4.2. Atoms-in-molecule MLmodeling of NMR shielding
Following the generation of the QM9-NMR dataset with 812k 13C nuclei, we have selected a random set of
100k entries for training the ML models. Further, a separate subset of 50k nuclei—not overlapping with the
100k training entries—was kept for validating the ML models. Additionally, we have compared the
distribution of the training and validation subsets with the total set, and found the normalized density
distributions to be similar (figure S1 is available online at stacks.iop.org/MLST/2/035010/mmedia).
Therefore, we believe that the ML models based on large training sets presented here do not suffer from a
selection bias.

For CM and SOAP descriptors, we used ωmeanopt of 422.78 and 18.85, respectively which also agreed to
values obtained via cross-validation (see table S1 and figure S4). Since FCHL implementation in QML does
not provide Dij values, a grid search showed the best ω to be 0.3 (figure S5). In all ML calculations, we used
λ= 10−3 determined through a logarithmic grid search. Since NMR shifts are a local property, each training
entity is an atom with its environment determined by a distance cutoff. For CM, SOAP, and FCHL we found
optimal cutoffs to be 2.3, 2.0, and 4.0 Å, respectively (see figure S3). Figure S7 features the distribution of the
kernel matrix elements based on 10k training examples for all three descriptors. While the distributions for
CM and SOAP are rather univariate, FCHL’s K ij values show a multivariate distribution, implying the latter
model to be sensitive to the choice of the kernel width. To save computational time, alchemical corrections in
FCHL were switched off. At the limit of large training set size, alchemical corrections made negligible
improvements (see figure S8).

After determining the most appropriate hyperparameters for various choices of descriptors, we collected
10 training sets of sizes: 100, 200, 500, 1k, 2k, 5k, 10k, 20k, 50k, and 100k. We ensured that each smaller
dataset is a subset of a larger one making the learning monotonous. We solved the linear equations of ML
(equation (4)) using Cholesky decomposition, and the trained machine was used to predict NMR shifts of
50k out-of-sample validation set. Mean absolute error (in ppm) for these 50k predictions was admitted as the
sole performance metric of the training accuracy (figure 3). It also shows the performances of∆-ML carried
out using B3LYP/STO-3G NMR parameters at PM7 structures.

Overall, one notes from figure 3 that for all descriptors∆-ML models converging by more than an order
of magnitude faster (in terms of training set size) than direct ML ones. It is also evident that among all three
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Figure 3.ML and∆-ML out-of-sample prediction errors for CM, SOAP and FCHL descriptors. For increasing training set size,
N, mean absolute error (MAE) in the prediction of NMR shielding of 50k hold-out 13C atoms are shown.

Table 1. Prediction errors of FCHL-based ML and∆-ML models, with 100k training examples, in different media. Mean absolute errors
in the prediction of the NMR shielding of 50k hold-out 13C atoms are reported in ppm.

Medium (ε) ML ∆-ML

Gas 1.88 1.36
CCl4 (2.228) 1.91 1.38
THF (7.426) 1.99 1.48
Acetone (20.493) 1.93 1.42
Methanol (32.613) 1.94 1.42
DMSO (46.826) 1.99 1.49

descriptors, FCHL delivers the best performance with an average prediction error of<2 ppm; the error drops
below 1.4 ppm for∆-ML modeling. However, it may be noted that for training set sizes⩽10k, both FCHL
and SOAP-based∆-ML models yielded identical predictions, with SOAP showing an exponential learning
rate, while FCHL showing a slightly faster rate going from 10k to 20k training examples—both∆-ML
models delivering≈ 2 ppm accuracy already for 20k training. The similarity in performance between SOAP
and FCHL can be observed in figure S10 both yielding similar correlation-coefficient across the training set
in both ML and∆-ML. For all case-studies, we used FCHL-100k ML and∆-ML machines.

The origin of accuracy limiting factors in ML was further investigated by categorizing errors based on the
NMR shielding range and the representation of the categorized region in the training dataset (figure S9).
We found that the errors were not uniformly distributed and for certain shielding constant ranges, mean and
variance of predictions were more erratic. The anomalous error in the−25 to 25 ppm region can be
explained by (a) under-representation of the aromatic or unsaturated systems in QM9 and (b) larger
chemical diversity in the shifts of the unsaturated regions. In the 150–175 ppm region, where we found
majority of C shielding values of the QM9-NMR dataset to lie, the prediction errors were rather low and less
spread out. We note that as more data is added in the erroneous regions (such as the−25 to 25 ppm region),
the accuracy of the NMR machine improves.

We also probed if the baseline 13C shielding values computed in gas phase can be utilized also for
modeling DFT-level values in various solvents. While it is possible to simultaneously model on multiple
property vectors by feeding in a rectangular matrix—row of column vectors—to the Cholesky procedure,
the cost of training can be slightly minimized by inverting the kernel matrix once and multiplied with any
arbitrary property vector to get new training coefficients [65]. Table 1 demonstrates the versatility of this
approach. Inverted FCHL-100k kernel instantly yielded trained machines for all solvents, with sub 2 ppm
accuracy. From gas phase to DMSO (ε= 46.8), we note a modest deterioration in performance.

4.3. Application of FCHL-basedML and∆-MLmodels
The magnitude of NMR chemical shift/shielding of a 13C nucleus in a molecule is governed by its local
environment. The inherent locality of this property implicitly suggests the shielding effect to drop with
increasing distance. Subsequently, the information gained from a local moiety of a small test molecule can be
reasonably transferred to the same local environment in a large molecule, provided the moiety is not
perturbed by chemical interactions alien to the training molecule.
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Figure 4. Error metrics for ML and∆-ML predictions of mPW1PW91/6-311+G(2d,p)-level 13C chemical shifts of randomly
chosen 25 molecules with n heavy atoms from the GDBn subsets of GDB17; n= 10,…, 17. MAE, RMSD and MAX correspond to
mean absolute error, root-mean-squared-deviation and maximal error after averaging over all C atoms in a molecule, respectively.

Using the 100k ML and∆-ML machines, we investigate how well these properties can be estimated for
larger molecules. The graph-based design of the GDB datasets allows one to explore CCS in an unbiased
fashion. In figure 4, we explore our ML and∆-ML models’ performances across GDBn datasets (where
n= 10, 11,…, 17) using 25 randomly chosen molecules per n. Each of these 200 molecules were relaxed at
the B3LYP/6-31G(2df,p) level with reference NMR shielding tensors calculated at the
mPW1PW91/6-311+G(2d,p) level (section 3).

As expected,∆-ML generally improves upon ML consistently yielding lower MAE and RMSD. Further,
we note maximum average error per molecule (MAX) to overall improve with∆-ML except for GDB15 and
GDB11 possibly due to systems with interactions alien to QM9. In figure 4, ML provides an MAE of<4 ppm
across the datasets while it is usually below 3 ppm for∆-ML. Arguably, 25 random molecules is not an
accurate representation of the entire dataset in question and hence trends intrinsic to these subsets are not
transferable across sets. Still, a general observation can be made: increasing number of heavy atoms
introduces long-range influences on moieties rendering our machines somewhat inefficient—MAE of both
ML and∆-ML generally increases as we explore larger systems. Thus, apart from small fluctuation in the
error trend across GDB10-GDB17—possibly due to sampling bias—the local models trained on QM9
provide quantitative prediction for molecules larger than those used in training.

GDBn Universe contains many drug molecules [62, 86–88]. Figure S11 displays 40 such molecules.
We tested our models’ efficiency in predicting 13C NMR shielding values, and present their error metrics
across direct and∆-ML machines for each molecule. As Spearman coefficients are sensitive to numerical
precision, we utilized a modified version by mapping the stick spectrum of the NMR shielding by a step
function of height 1 and width of 1 ppm, when needed. The largest∆-ML error encountered in this set is for
desflurane due to the presence of di- and tri-fluoro methyl groups that are under-represented in the training
set. The second largest∆-ML error is for diethylcarbamazine stemming from deficiencies in baseline data.
We note a total of 25 and five systems to show MAE higher than 3.0 ppm in ML and∆-ML modeling,
respectively. Barring six systems,∆-ML improves upon direct ML’s MAE, a trend previously noted in figure 3
and figure 4; not only does it improve MAE, but for 14 systems it also improves ρ. Evidently,∆-ML modeling
helps to reach semi-quantitative predictions due to the accuracy of the baseline. In figure S12, we present 12
extra-GDB17 drugs with their error metrics and DFT chemical shifts. As expected,∆-ML outperforms
direct-ML consistently across all 12 molecules. The highest deviation is noted for Morphine with∆-ML
presenting an MAE>3.0 ppm possibly because of moieties under-represented in QM9. However, for others
the inherent locality of NMR shifts aid prediction. Drugs with extended delocalization present errors, since
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conjugation is inadequately captured in our ML-models. This deficiency is further noted in figure S13 where
predicted chemical shifts of interstitial atoms of PAHs show the maximum deviation.

5. Conclusion

We present the QM9-NMR dataset that augments the QM9 set [59]—containing DFT-level structures and
properties of 134k organic molecules—with NMR shielding values computed at the
mPW1PW91/6-311+G(2d,p)-level for about 2.4 million atoms constituting the molecules in this dataset.
It may be further extended by including J-coupling between 1H and other nuclei so that the diverse array of
nuclei and properties present in QM9-NMR may aid seamless data-mining or ML studies. The impressive
size of the dataset compelled us to explore solvent-phase values using an implicit solvation model, which
however may not be adequate to describe effects due to the solute-solvent explicit interactions as addressed
in [97]. We focus on predicting the isotropic shielding values of 13C nuclei in QM9 entries through KRR-ML
models with Laplacian kernels. Upon benchmarking the performance of ML models across three descriptors:
CM, SOAP and FCHL, we note a monotonous improvement in learning with increasing training set size up
to 100k, with respect to predictions for a 50k hold-out set, where an FCHL-based (without alchemical
corrections) ML-model showed the least MAE of 1.88 ppm.∆-ML, using PM7 geometries and
B3LYP/STO-3G baseline values, improves upon this accuracy to yield an MAE of 1.36 ppm. This is an
improvement over the current record in out-of-sample prediction error in data-driven 13C nuclei NMR
shielding modeling [38]. SOAP-based ML model’s under-performance could be speculated to the use of
Laplacian kernel-based KRR when Gaussian process regression is more effective. The performance drops
with increasing diversity of validation molecules but the target being of local nature benefits from our
models and aids in the prediction of 13C shielding in molecules much larger than those in training set. Such a
trend has been noted during the validation of 13C shielding for a random subset of 25 molecules collected
from GDB10 to GDB17 sets. Although, the prediction accuracy decreased with increasing molecular sizes,
the MAE reported across datasets remained within 4.0 ppm for ML and 3.0 ppm for∆-ML. When predicting
13C shielding of drug molecules—one containing 40 drug molecules from GDB17 Universe (figure S11), and
the other containing 12 drugs with 17 or more heavy atoms (figure S12)—∆-ML improves upon ML’s
performance with the MAE decreasing from 3.7/4.2 ppm to 2.3/2.6 ppm for 40-drug/12-drug datasets,
respectively. However, delocalization in linear PAHs (figure S13) proves challenging because of the small
cutoff values decided from cross validation on molecules lacking such effects.

While the deficiency in our models should not fade with other local descriptors [98], augmenting the
training set with systems displaying extended conjugation such as PAHs, fullerenes, etc, or improving upon
the current baseline for∆-ML should lead to better accuracies. This opens exciting possibilities of
ML-guided analysis into nucleus independent chemical shifts complimenting the latest tight-binding model
for PAHs [99]. Although our 100k training set is an adequate representation of the QM9 dataset, adaptive
sampling method employed in [38] might be useful when using smaller training sets. Given the locality of
the shielding property, it may be helpful to employ different machines [47] trained on sp, sp2 and sp3 C—to
account for systematic deviations in each groups. Finally, one can always improve the QM9-NMR dataset by
estimating the effects from geometries obtained at ωB97XD with triple-zeta quality basis set.
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[53] Bartók A P, Kondor R and Csányi G 2013 Phys. Rev. B 87 184115
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