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Abstract  

This paper is concerned with an orbit prediction using one of the best regular theories 
(KS-regularized variables).  Perturbations due to the Earth’s gravitational field with axial 
symmetry up to the fourth order zonal harmonic and rotating/non-rotating atmosphere 
(variation in density model with height) are considered.  Applications of the problem will be 
illustrated by numerical and graphical example.  

 
1. Introduction  
     It is well known that the solutions of the Classical Newtonian Equations of 
motion are unstable and these equations are not suitable for long-term integrations.  
Many transformations have emerged in the literature in the recent past to stabilize 
the equations of motion either to reduce the accumulation of local numerical errors 
or allowing of using a larger integration step size, in the transformed space, or both.  
     Examples of such transformations include the use of a new independent variable-
time transformation, transformation to orbital parameter space which tends to 
decouple fast and slow variables, and the use of integrals as control terms.  One of 
such transformation, known as the KS-transformation, is due to Kustaa-neimo and 
Stiefel, who regularized the non-linear Kepler motion and reduced it to linear 
differential equations of a harmonic oscillator of constant frequency.  Stiefel and 
Scheifele, (1971) further developed the application of the KS-transformation to 
problems of perturbed motion, producing a perturbational equations version.  
2. Formulate the Problem:  
     The equations of motion of an artificial satellite are given generally as  
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where x  is the position vector in a rectangular frame (the physical frame), xr 
  

is the distance from the origin,  is the Earth's gravitational constant, V is the  

perturbed time independent potential and P


 is the resultant of all non-conservative 
perturbing forces and forces derivable from a time dependent potential.  
     The potential of the Earth's gravity with axial symmetry can be written as  
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where R is the Earth's equatorial radius, Ji is the non-dimensional coefficient of the 
Earth's oblateness and /r)(xP 3i  is the Legendre polynomial of order i.  In the 
present paper we shall assume that the potential of the Earth's gravity of the axial 
symmetry is taken up to the fourth order zonal harmonics J4, then Eq.(2.2) rewrite as  
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where   Qi =  Ri Ji ,   i = 2(1)4  

and   2
3

2
2

2
1 xxxr  .  

     Since the perturbing acceleration due to air drag is expressed as  
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            (2.4)  

where - CD is the non-dimensional drag coefficient depending on the satellite 
geometry and in most cases its value lies between 2.1 & 2.3;  

- A is the effective cross-sectional area, M is the satellite mass;  

-  is the density function of the ambient gas (the atmosphere) and depends 
primarily on the altitude and to a lesser extent on the solar and 
geomagnetic activity.  In this paper we’ll test two models of air density 
which are (Bakry and Hassan, 2005)  

1- 
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0
hrr pe   ,   (model I)    (2.5)  

where 0 is the value of  at the reference level rp, and p is the suffix refers to 
perigee.  
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where 0 is the value of  at the reference level r0, while R  and  are two 
adjustable parameters.  They can be adapted to the estimated or observed variations 
of the solar activity and periodically updated so that the dynamics of the atmosphere 
is taken into account.  The value of R  is approximately equal to the mean Earth’s 
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equatorial radius and   equals the inverse of gradient of the density scale height and 
can take values in the range from 3 to 9 (Delhaise, 1991).  

- v  is the velocity of the satellite relative to the atmosphere and is 
generally computed through  

rvv 
   ,          (2.7)  

where v  is the velocity of the satellite with respect to the Earth’s center, i.e., 
( 11 xv  , 22 xv  , 33 xv  ); and 


 is the west-to-east angular velocity vector of 

the atmosphere (Bakry and Hassan, 2002; Bakry and Hassan, 2005).  
     Finally, the equations of motion of an artificial satellite in KS-regularized 
variables are  
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hence  ba
,  is used to denote the scalar product of two vectors a  and b


;  

where   -      k is one-half of the negative Keplerian energy as  
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Denoting differentiation with respect to the new time s (knowing as the fictitious 
time) by a prime (), since the independent variable is changed from time (t) to 
fictitious time (s) according to (Stiefel and Scheifele, 1971)  

rdsdt / ,  

then for any variable  we have  

 r .  

3. Equations of Motion:  
     The differential equations of motion for the satellite in KS-regularized variables 
under the perturbations of the Earth’s gravity and air drag are  

11k1 λ
2
ruαu  ,           (3.1)  

22k2 λ
2
ruαu  ,           (3.2)  

33k3 λ
2
ruαu  ,           (3.3)  

44k4 λ
2
ruαu  ,           (3.4)  

44332211k λuλuλuλuα  ,       (3.5)  

rt  ,                (3.6)  

  44332211k λuλuλuλuα4rµr  ,  (3.7)  

where    1 =    u1 b1 + u2 b2 + u3 b3 ,  

2 = – u2 b1 + u1 b2 + u4 b3 ,  

   3 = – u3 b1 – u4 b2 + u1 b3 ,  

4 =    u4 b1 – u3 b2 + u2 b3 ;  
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  ,  

since  can take any of the above two models of air density with non-rotating 
atmosphere, then the velocity v  becomes equal v , but with rotating atmosphere 
then the velocity v  becomes  

2311 xxv   ,  1322 xxv   ,  33 xv  ,  

with neglecting the two components ),( 21  of the angular velocity of the 
atmosphere.  Because of their values are very very small.  
4. Solution Technique:  
     In this section, the solution technique of the formulations of section 3 will be 
applied by tow steps.  The first step is to transform Eqs.(3.1) up to Eqs.(3.7) into 
first order differential equations by the following substitutions  

ii uy  ,  ii uy 4 ,   i = 1(1)4, ky 9 , ty 10 ,  ry 11  and  ry 12 .  

Then the first order system of the problem becomes  

5yy 1 ,      (4.1)     62 yy  ,      (4.2)  

73 yy  ,      (4.3)     84 yy  ,      (4.4)  
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1
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2112
1

296 byyyy  ,             (4.6)  

3112
1

397 byyyy  ,             (4.7)  

4112
1

498 byyyy  ,             (4.8)  

483726159 bybybybyy  ,          (4.9)  
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1110 yy  ,                  (4.10)  

1211 yy  ,                  (4.11)  

 9443322111112 4 ybybybybyyy   .     (4.12)  

     The second step is solving the above system by using the fourth-order Runge-
Kutta method with a fixed step size.  So, the initial values, the step size and the 
accuracy checks, which we need in the solution, were derived in Bakry and Hassan, 
(2002) and Bakry and Hassan, (2005).  
5. Results and Conclusion:  
     We’ll take as the numerical example the Indian Satellite (RS-1) at 300 Km height 
which was launched from Sriharikota range on 18 July, 1980 and remained in its 
orbit for around 371 days or about 4000 revolutions (Sharma and Mani, 1985).  The 
initial position and velocity components are  

 8) Km, -1776.01, 6268.094 (1626.742x 0


,  

Km/sec-5.15883) 0.239214, 5.920522,  (x0  ,  

where one orbital revolution is elapsed 1h.588352058 and its area equals 0.319019 
m2 and its mass equals 35.443 Kg.  
     Since the adopted physical constant are  

R = 6378.135 Km,    = 398600.8 Km3/sec2 ,  
and the coefficients of the four order zonal harmonic are  

J2 = 1.0826157  10-3,      J3 = - 2.53648  10-6,      J4 = - 1.6233000  10-6, 

where CD = 2.2  and  3 = 7.292115833  10-5 rad./sec.  (Sharaf and Awad, 1985), 
and we’ll chose  (the arbitrary const.) equals 4.  
     We’ll use all the above values to compute the position and velocity components, 
i.e., the six elements; especially the semi-major axis, the eccentricity and inclination, 
because of these elements are strongly affected by our concerned forces.  Also, we’ll 
get the accuracy check tables (bilinear relation, BI) at any time.  These are illustrated 
in the following figures and tables over one thousand revolutions.  
     All the figures show the effects of the Earth’s gravitational field with axial 
symmetry up to the four order zonal harmonic and air drag with and/or without 
rotating atmosphere.  These effects are big and clear in the model II of air density 
(Figs. 2) than model I (Figs.1), because of the value of the term 

    40 /   RrRr  is greater than the value of 
]/)([ hrr pe 
, so we can 

deduced that the model II is more accurate than the model I, because of their 
prediction data are approximately coincide with the observed one (Sharma and 
Mani, 1985).  
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     Also, all the Figures show a small difference between the cases with and/or 
without consideration of the rotation of the atmosphere.  This difference is due to the 
small value of 3.   
     All Tables give the bilinear relation (BI) for all the studied cases, which indicates 
a good prediction for the numerical solution.   

The numerical results are just only as an example, since this method could be 
applied to any orbit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(1-a): one thousand revolutions (model I).
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Fig.(1-b): One thousand revolutions (model I).
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Table (1): The values of bilinear relation correspond to their perturbation forces  
over one thousand revolutions. 

 
Time  
(Days) 

The bilinear relation (BI)  

Only grav. With pert.,  
without rotation 

With pert.,  
with    rotation 

59.4970218402 8.788485593E-05 8.788477135E-05 8.788472951E-05 
60.1588352089 8.788504965E-05 8.788500509E-05 8.788493778E-05 
60.8206485775 8.788524246E-05 8.788515152E-05 8.788514970E-05 
61.4824619461 8.788536070E-05 8.788541072E-05 8.788533160E-05 
62.1442753148 8.788540526E-05 8.788562445E-05 8.788548803E-05 
62.8060886834 8.788547348E-05 8.788570449E-05 8.788563355E-05 
63.4679020520 8.788552168E-05 8.788576906E-05 8.788572086E-05 
64.1297154207 8.788560353E-05 8.788576815E-05 8.788573905E-05 
64.7915287893 8.788570449E-05 8.788568312E-05 8.788575315E-05 
65.4533421579 8.788563355E-05 8.788573723E-05 8.788564310E-05 
66.1151555266 8.788553214E-05 8.788573450E-05 8.788554578E-05 

 
 

 
 

Fig.(1-c): One thousand revolutions (model I).
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Fig.(2-a): One thousand revolution (Model II).
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Fig.(2-b): One thousand revolutions (Model II).
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Table (2): The values of bilinear relation correspond to their perturbation forces  
over one thousand revolutions. 

Time  
(Days)  

The bilinear relation (BI)  

Only grav. With pert.,  
without rotation 

With pert.,  
with    rotation 

59.4970218402 8.788485593E-05 8.788434116E-05 8.788433297E-05 
60.1588352089 8.788504965E-05 8.788452487E-05 8.788463765E-05 
60.8206485775 8.788524246E-05 8.788472587E-05 8.788476953E-05 
61.4824619461 8.788536070E-05 8.788489322E-05 8.788491141E-05 
62.1442753148 8.788540526E-05 8.788495416E-05 8.788506511E-05 
62.8060886834 8.788547348E-05 8.788504056E-05 8.788521973E-05 
63.4679020520 8.788552168E-05 8.788515061E-05 8.788525247E-05 
64.1297154207 8.788560353E-05 8.788514424E-05 8.788532796E-05 
64.7915287893 8.788570449E-05 8.788511468E-05 8.788533387E-05 
65.4533421579 8.788563355E-05 8.788506466E-05 8.788524792E-05 
66.1151555266 8.788553214E-05 8.788498326E-05 8.788517380E-05 

 
 

Fig.(2-c): One thousand revolutions (Model II).
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