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Abstract. Background and Objective: Thermal ablation modalities such as 
Radiofrequency ablation (RFA) / Microwave ablation (MWA) are deliberately 
used for marginally invasive tumor removal by escalating tissue temperature. 
For precise tumor extinguish, thermal ablation outcomes need routine 
monitoring for tissue necrosis in a challenging research task. The study aims 
to exploit hyperspectral imaging (HSI) to evaluate the impact of the liver tissue 
ablation. Materials and Methods: RFA with temperature range (≥80 °C) was 
accomplished on the ex vivo animal liver and evaluated using a spectral camera 
(400~1000 nm). The spectral signatures were extracted from the HSI data 
after the following processing steps: capturing three spectral data cubes for 
each liver sample with total 7-samples (before ablation, after ablation, and 
after ablation with sample slicing) using an HSI optical configuration. The 
custom HSI processing comprises “Top-hat and Bottom-hat transform” 
combined with “watershed transform” image segmentation to increase the 
intensity for a region of interest (ROI) of the investigated tissue, linking 
spectral and spatial data. Additionally, statistical analysis for HSI data was 
performed to exclusively select the best spectral band that discriminates 
between the normal, thermally-damaged, and ablated liver regions. 
Results: The variation of the optical parameters for the investigated liver 
samples provides variable interaction with the light diffuse reflection (Ŗd) over 
the spectrum range (400~1000 nm). Where, the extracting spectral 
information of the various tissue zones from the induced RFA linked to the 
hemoglobin, methemoglobin, and water permits variations. The generated 
spectral image after image enhancement utilizing “Top-hat and Bottom-hat 
transform” followed by “watershed segmentation”, showed high contrast 
between normal and thermal regions at a wavelength (600 nm). However, the 
wavelength (900 nm) shows a high variance between the normal and ablated 
regions. Finally, delineation of the thermal and ablated regions on the 
complemented enhanced image. Conclusion: HSI is considered a promising 
optical noninvasive technique for monitoring the RFA toward enhancing the 
ablation-based treatment for liver tumor outcomes. © 2021 Journal of 
Biomedical Photonics & Engineering.  
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1 Introduction 

The liver is the biggest organ regarding the human organs 
and exemplifies about 3~5% of its weight in grown-ups. 
The growing knowledge of the liver anatomy assists in 
developing novel surgical techniques that are mainly 
used in treating both primary and secondary liver 
lesions [1]. There are several causes of liver 
inflammation, such as (drug- venomousness, hepatitis A, 
hepatitis B, liver alcoholic disease, and nonalcoholic 
steatohepatitis) [2]. 

Hepatocellular carcinoma (HCC) is the significant 
recurrent crucial tumor of the liver [3]. HCC is ranked the 
4th in tumor repetition frequency and the 3rd in death by 
malignancy worldwide [4]. HCC is the most widely 
recognized liver cancer with more or less three-quarters 
of the diagnosed cases [5]. Over 600,000 liver patients 
pass away by HCC annually. Seeking the causes for the 
liver malignancy is a challenging task for both clinical 
and pharmaceutical research teams [6]. Egypt witnessed 
a noticeable augmentation of HCC patients who were 
earlier diagnosed with other liver diseases regarding the 
other countries in the same region [7].  

The early diagnosis of HCC enables the request of 
primary stage therapies that considerably increases the 
potential for patients survival [8]. Liver transplantation, 
if available, is the highest survival option for HCC 
patients treatment [9–11]. The availability of liver 
transplantation is restrained by the availability of donors 
and the financial abundance beside complying with the 
Milan criteria [12].  

The fusion of the significance of minimum invasive 
diagnosis and therapeutic methods is an approach for 
elevating the proficiency of the modern surgical 
techniques [13]. Although, the resection of cancers in 
neurosurgery with regular restorative strategies are 
generally depends on the experience of neurosurgeons 
during the open operation [14]. However, for liver-tumor 
therapy, careful resection is a very common 
technique [15]. The third therapeutic option is suitable 
for primary stage HCC patients with the non-cirrhotic 
liver is hepatic resection [16]. Minimal invasive thermal 
ablation modality has proved to be a vital treatment 
choice when achievable [17]. 

The minimal invasive thermal ablation techniques 
such as: radio-frequency ablation (RFA) [18], laser 
thermal ablation (LTA) [19, 20], microwave ablation 
(MWA) [21, 22], high-intensity focused ultrasound 
(HIFU) [23], and bulk thermal ablation (BTA) [24, 25]. 
All the aforementioned techniques represent significant 
result therapy for unresectable essential and secondary 
liver tumors [18, 26, 27]. The main role of all the thermal 
ablation techniques is to gradually increase the 
temperature in the investigated sample (≥60 °C) to 
deliver a necrotic condition for tumor cells. 

Recently, various studies informed the incorporation 
of few imaging techniques for the purpose of monitoring 
the ablation of the liver`s tumors. Where, the diffuse 
reflectance spectroscopy (DRS) is utilized to assess RFA 
of 8 investigated samples of liver tumor with high 

accuracy (97~99%) to discriminate between the 
predicted thermal damage and the histology report [17]. 
Moreover, another study exploiting the computed 
tomography (CT) with MWA to investigate three ex-vivo 
porcine samples with a thermal procedure (100 W, 
4.5 min), the results demonstrate ablation region 
(4.1 ± 0.2 × 5.6 ± 0.2) [28]. Additionally, Magnetic 
Resonance Imaging for Thermometry (MRIT) is recently 
counted as the gold-standard in measuring the tumor 
necrosis by thermal ablation [29]. 

HSI is else called imaging spectroscopy, which 
declares the innovation of integration typical imaging 
and spectroscopy modalities to secure both spatial and 
spectral data of an item [30–32]. Although imaging 
spectroscopy has been accessible as a far off detecting 
innovation since the 1980s [33, 34]. Up to this point, 
spectral imaging has regularly just been accessible to a 
constraint number of researchers and experts because of 
the significant expenses of building spectral cameras and 
the complexity of processing spectral extracted data 
related to multiple bands [35–39]. 

HSI is an expanding imaging technique to divergent 
fields of science including the medical field such as 
monitoring of thermal ablation. M. Landro et. al. present 
a study in assessing the laser ablation in the porcine in 
vivo liver [40] and monitoring laser-induced thermal 
damage in gastric mucosa [41]. There are also Skin 
Erythema and Pigmentation [42], Breast cancer 
identification from the pathological tissues [43–46]. 
Furthermore, a research on brain tissue was capable to 
identify glioblastoma (GB) with sensitivity 88% and 
specificity 77% [47, 48]. Moreover, the diffuse 
reflectance measurements to indicate the hemoglobin 
oxygenated and deoxygenated condition [49–51]. 

The incident light interrelates with the liver tissue 
regarding its optical properties (type/size/density/color) 
to provide several optical properties as example 
(Transmission, Absorption, and Diffuse Reflectance) 
[52, 53]. As a result of these properties, it can be 
recognizing and characterized the investigated samples in 
a certain band by their spectral signature, as more 
clarified in Fig. A1 in the appendix.  

This study was performed in the form of successive 
series of investigation trials to highlight HSI capability to 
monitor RFA [54–56]. M. H. Aref et al. have showed in 
previous study that the HSI could be discriminate the 
surface thermal removals upon on the investigated 
10 samples of the ex vivo bovine liver at ideal spectral 
picture (720 ± 18.92 nm) [55]. Additionally, investigate 
both the side penetration and surface of RFA [54]. 
Moreover, successfully distinguish and delineate with 
cross-correlation algorithm the thermal damage in ex vivo 
liver samples [56]. However, the HSI strategy offers a 
particular spectral picture over the spectrum range as it 
gathers latitudinal and spectral data for under 
investigation samples [8, 57–58]. 

In the presented study, we aimed to build up an 
optical imaging system to measure the diffuse reflectance 
(Ŗd) exploiting the hyperspectral (HS) camera to identify 
and characterize the spectral signature of the thermal and 
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ablated regions in ex vivo liver samples. Applying image 
processing incorporates contrast enhancement to the raw 
data uitilizing “Top-hat and Bottom-hat transform” 
combined with “watershed transform” image 
segmentation to increase the intensity of the region of 
interest (ROI) for the investigated tissue. Moreover, 
delineation of the thermal and ablated regions on the 
complemented enhanced image to provide a vital 
information for assisting the surgeon in monitoring the 
thermal ablation outcomes. 

2 Materials and Methods 

The captured image data with the HSI system, image 
progression in advance, and subsequently thermal 
ablation, contrast enhancement to the original image 
using “Top-hat and Bottom-hat transform” combined 
with “watershed transform” image segmentation 
algorithm as channels to highlight the thermal and 
ablated regions in the scan image cubes by the HS 
camera. The capturing time for each image is about 
6~10 sec and calculation time is <15 sec using MATLAB 
software (The MathWorks, Natick, MA, USA, 2019) on 
a computer with processor Intel Core i7 @1.8 GHz with 
a 16 GB RAM.  

2.1 The prospective approach interconnections 
protocol and procedures 
• Sample preparation & Tissue characterization. 
• Hyperspectral (HS) scan Images for the ex vivo 

liver samples. 

• The measurements for sample diffuse reflection 
(Ŗd). 

• The statistical Calculation of the optical 
properties for validation. 

• Selecting the optimum spectral image with high 
contrast between normal, thermal, and ablation. 

• Applying the Custom clustering algorithms. 
• Delineation of the ablation and thermal effect 

regions of the enhancement image. 

2.2 Investigated sample slicing and 
preparation 

Before proceeding to the experimental investigation, the 
sample collection procedure was approved by Ain Shams 
university – faculty of medicine – ethics committee. A 
total of seven different samples of bovine liver tissue 
achieved from a fresh slaughtered cow which was 
attained from a local abattoir in Egypt, then transported 
in an icebox to the laboratory. The investigated ex vivo 
liver samples were crudely cut into slices with 
approximate sizes (~10 × 8 cm), Sample thickness 
23~36 mm. The investigated samples were preserved in 
an evacuated bags in the freezer at temperature ≤ –65 °C, 
and picked out and added in a neutral buffered saline 
before the RFA experiments with enough time [55]. The 
inspected lap trails at temperature 23 ~ 24 °C, and the 
explored sample temperature 25 ~28 °C, observed with a 
multimeter (Fluke, 289, USA), as shown in Fig. 1 and the 
additional investigated samples had been displayed in 
Fig. A2 in the Appendix. 

 

	

Fig. 1 The investigated ex vivo liver samples; (a) the liver Sample #1 before ablation, (b) the liver Sample #1 after ablation 
in the plastic tray of the experiment and with the RF probe, (c) the illustration for the active blade of the RF tip inserted 
in the investigated liver Sample #1; (c) the liver Sample #1 after the ablation trail highlighting the affected ablation region 
in Red dotted lines and thermal regions in yellow dotted lines, (e) the investigated liver Sample #4 before ablation inserted 
in neutral buffered saline and observed with a multimeter (Fluke, 289, USA), (f) the investigated liver Sample #4 after 
ablation in the experimental plastic tray and with the RF tip inserted , (g) the investigated liver Sample #4 after ablation 
and slicing to compare the actual ablated region with scientific expert, (h) the sliced liver Sample #4 after ablation and 
wrapped in the vacuumed bags and tissue storage solution prepared to be sent to the pathological lap. 
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Fig. 2 Hyperspectral optical imaging system for measuring the light diffuse reflectance (Ŗd) of the investigated ex vivo 
tissue samples; (1) hyperspectral camera (Resonon, Pika XC2, USA); (2) electrosurgical generator (Premier; 2001e, 
France); (3) the source light for the transmission measurement trails (Fiber-lite, MI-150, USA); (4) the power supply 
controller for the light source (Mean Well, ENP360-12, Taiwan) of diffuse reflection (Ŗd) measurement trails;  
(5) the 4-halogen lamps (4 × 35 W halogen lamps) at wavelength range (380~1050 nm); (6) the linear translation stage; 
(7) the investigated ex vivo liver samples; (8) the computer and image software processing and analysis. 

The experiment was performed with Radiofrequency 
(RF) Generator (Premier; 2001e, France) to generate the 
necessary thermal ablation in the liver tissue. The power 
protocol was as following (25~50 W, 1~5 min, 
Continues). The affected ablation region in the sample 
was around ~10 × ~8 mm. Furthermore, all the image 
processing of the captured HS cube was less than 5 min 
during the thermal elaboration. The complete data of the 
investigated tissue with the power protocol for each 
sample experiment, had been illustrated in Table A1 in 
the Appendix. 

2.3 Optical imaging system and experimental 
trail 

The active blade of the RF generator was positioned in 
the center of the investigated sample. Where terminal 
was embedded around 1.5 ~ 2 cm into the liver sample, 
and RF power was applied for 2 ~ 5 min. Following data 
procurement, markers were embedded into the imaging 
plane on the two sides of the electrode, and the ablation 
was cut through this plane and captured with the 
commercial CCD camera  for data recording. After the 
RFA the samples is sliced in the coronal plane from the 
RF tip insertion and had been manually measured and 
prepared to be sent to the pathology evaluation 
(pathology is the ground truth to validate the tissue 
necrosis and thermal effect). 

To capture the necessary HSI data, we exploited 
hyperspectral camera (Resonon, Pika XC2, USA) with 
spectral resolution equal to 1.3 nm, bit depth of 12 bits, 

maximum frame rate equal to 165 fps, spatial 
channels = 1600, and 462 spectral channels. The camera 
is incorporated with a lens (Schneider, 6 mm, CNG 
2.1/6- 0901, Range 400 : 1000 nm, Germany). The 
utilized light assembly for the HSI data capturing is a 
configuration of a polychromatic source light controller 
(Mean Well, ENP360-12, Taiwan) with a light source 
(4 × 35 W tungsten halogen lamps) at wavelength range 
(380 ~ 1050 nm). The prospective approach and its 
experimental setups aimed to measure the light diffuse 
reflectance (Ŗd) for an ex vivo tissue sample, by exploring 
the optical properties spectroscopy in the near-infrared 
and visible (NIR-VIS) spectrum, as shown in Fig. 2. 

2.4 Hyperspectral Image Conquering 

HSI sensors produce a three-dimensional (3D) 
information structure, called HS cube, where the spatial 
data is contained in the initial two measurements, while 
the third measurement incorporates the spectral data 
[59, 60]. In a hyperspectral picture, every pixel has an 
arrangement of reflectance in various spectral 
frequencies that can show the spectral outline of that 
pixel [48]. 

Three individual arrangements of hyperspectral 
pictures were gotten for each explored liver sample. 
Line-scan images were captured for exposure times of 
6 sec at 1.3 nm intervals, and corresponding to 
1600 × 600 pixels per spectral band (3.6 sec for each 
cube image). The hyperspectral images were composed 
of a total of 447 spectral bands in the range from 
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approximately 379 to 1050 nm, incorporated with a lens 
with Visible and Near-infrared range (VNIR) range (400 
to 1000 nm). 

2.5 Basic Concepts and Fundamentals of 
Clustering Algorithms 

The cluster is commonly handled as a gathering of an 
item's which were “identical” between them just as 
“divergent” to an item's having a place with the further 
clusters [61]. Clustering algorithms are as follows: 

1. Exclusive-clustering. 
2. Overlapping-clustering. 
3. Hierarchical-clustering.  
4. Probabilistic-clustering. 
In this study, we used one of the capturing is 

frequently applied clustering and segmentation 
algorithms: 

• K-mean clustering. 
• Watershed transform / Segmentation. 
• Fuzzy C-means clustering. 

2.5.1 K-means Clustering 

The K-means clustering is the simplest unsupervised 
learning algorithm that is capable to solve the 
distinguished clustering issues. K-means algorithm is 
prevalent in rapid decision making approach for its 
simplicity, adequacy as well as being moderate although 
it had a steady presentation across various 
issues [54, 62, 63] Despite the way that the time 
inconvenience was direct to the information size, 
customary k-implies is so far not admirably compelling 
to manage a web-scale data [61]. The strategy follows a 
basic as well as a simple approach to characterize a given 
data set via a specific number of clusters settled an 
earlier [64]. 

2.5.2 Watershed transform / Segmentation 

The watershed transform is a structural essential tool for 
image segmentation [65]. It is established on a 
mathematical structure for segmenting the data of 
interest. It was initially represented by L. Vincent and 
Soille in the image segmentation field then extended 
rapidly in recent years [66, 67]. It is touchy to weak edges 
and is appropriate for getting one-pixel associated and 
closed contours with accurate area [68, 69]. 
Conventional watershed segmentation is sensitive to 
noise and can prompt critical over-segmentation. Along 
these lines, numerous analysts have proposed different 
strategies ceaselessly for improving the technique 
including developing a preprocessing step for calculating 
the distance transform for a binary picture before 
watershed transformation [67, 70]. 

2.5.3 Fuzzy C-means clustering 

Fuzzy C-means (FCM) strategy is considered as a 
significant high beneficial because it isolates a lot of 
information from one single picture unlike to other hard-
segmentation methods [71]. In FCM clustering 
technique, the image pixel was assigned to the fuzzy 
clusters instead of a label [72]. FCM empowers pixel to 
have a spot with different clusters through changing 
degrees of part transport function, dissimilar to a hard-
clustering system that powerfully designates the pixel to 
just a single class. The FCM Algorithm is the technique 
for clustering at which it concurs a solitary purpose of a 
content having a place with two or more clusters [73]. 

 

	

Fig. 3 The basic block diagram of the custom algorithm for image analysis and preprocessing after selecting the optimum 
spectral image of the investigated liver sample tissue. 
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2.6 The Image Analysis and Preprocessing 

The image analysis and preprocessing step mainly 
incorporates the Moving average filter and normalization 
for the acquired HSI to remove the background noise. 
Moving average filter (K = 10) is exploited to banish the 
noise influences. For image enhancement, we exploit a 
common methodology using “Top-hat and Bottom-hat 
transform”. Next, utilizing the “watershed transform” for 
image segmentation to increase the ROI of the 
investigated liver tissue samples. Moreover, delineation 
of the thermal and ablated regions on the complemented 
enhanced image to discriminate the distinct regions, as 
explained in the block diagram in Fig. 3. 

A basic advance in HSI imaging, before image 
procurement, is a level field correction for data 
standardization. A white equalization and dim current 
measurements were utilized to gain relative reflectance 
from the sample [60]. The dark cube was captured by 
closing the HS camera lens with its cap to avoid any 
incidence light to the sensor. Information from a dark 
image and white balance estimations were utilized to 
correct the deliberate material image. The fundamental 
reason for this amendment is to wipe out artifacts and 
noise impacts on the sample tissue, as more clarified in 
Eq. (1): 

 (1) 

where  is the qualified reflectance of the sample 
image, is the caught image, is the dark 
scanned image with a closing lens, and  is the 
acquired whiteboard image. 

Employing the normalization on the acquired image 
to remove the polychromatic light noise. The originally 
captured images numerous due to the incident light, the 
asymmetrical shape of the investigated sample, and 
temperature deviations, spectral images have to be 
normalized comprising pixel normalization, as 
demonstrated in Eq. (2). 

 (2) 

Even though, Normalization adjusts an  
m-dimensional grayscale subsequent image  
!!"#$%&'(: {$}  with intensity evaluations in the range 
(&'(!"#$%&'() to the extreme (&)*!"#$%&'() into a new 
image !)#*: {$}  with intensity rates in the least range 
(&'()#*) to the extreme (&)*)#*).Then, utilizing the 
Moving average filter, the filter at kernel value = 10 for 
noise elimination and image improvement [74], as 
clarified in Eq. (3). 

 (3) 

where +  is the noisy picture, is the restored 
picture, and , and - for the row and column coordinates 
correspondingly, within a window W of size ./ where the 
procedure takes place. 

To maximize the image contrast, we utilized Top-hat 
and Bottom-hat Transform for image contrast 
enhancement. 

• The top-hat transform could be illustrated as 
the difference between the original image and the 
opening image. Where the opening image is a collection 
of spotlight parts that fit a precise structuring element.  

• The bottom-hat transform could be illustrated 
as the difference between the closing of the original 
image and the original image. The closing of an image is 
the collection of background parts of an image that fit a 
precise structuring element. 

Although in image contrast enhancement, the bottom-
hat image represents the gaps between the targets of 
interest. To maximize the contrast between the targets 
and the gaps that separate them from each other, the 
“bottom-hat” image is subtracted from the 
“original + top-hat” image. 

Since “watershed transform” distinguishes intensity 
“valleys” of the acquired image. We utilized the 
(imcomplement) function on the contrast-enhanced 
image to convert our targets of interest to intensity 
valleys. We discriminate all the intensity valleys under a 
certain threshold with the (imextendedmin) function. The 
outcome of this function is a binary image. Where the 
location is more important than the region size of the 
image. To confine the selected valleys extracted by the 
function (imextendedmin) we utilized another function 
called (imimposemin) changing the valley`s pixel value 
to “0”. However, all the discrete regions contain the 
minimum values will be detected by the “watershed 
transform”. 

Finally, the reflectance spectra of the pixels made out 
of thermal ablated tissue surface were isolated and used 
to figure a typical reflectance extend to delineate the 
thermal levels in the investigated liver sample. The 
delineation contours were finally displayed on the 
complemented enhanced image in red and blue for 
ablation and thermally affected areas, respectively. 

3 Results 

Regarding the system interconnections protocol and 
process, beginning from hyperspectral image scanning 
for the investigated liver sample and image enhancement 
to measure the (Ŗd) of the various regions of the 
investigated sample, we could differentiate between 
these regions regarding the wavelength variations. each 
pixel in the investigated liver tissue has a relative 
reflectance for the wavelength variations. The 
experimental setup was evaluated and verified with 
respect to the pathological report. 
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Fig. 4 (a) The scanned Hyperspectral (HS) image of the investigated Liver Tissue Sample#1 highlighting the measured 
diffuse reflection (Ŗd) regions over the spectral range (400~1000 nm); (b) the blue pixel demonstrate the (Ŗd) of the normal 
tissue not affected with the thermal region where it's presented in the graph by the blue solid line; the red pixel representing 
the thermal regions and plotted in the graph with the red solid line, additionally the black pixel represent the ablated 
region with a black solid line in the graph. 

	

Fig. 5 The scanned HS images of the investigated ex vivo liver Sample #1 after ablation from 450 nm till 900 nm with 
50 nm resolution, where we could visually see the differentiation of the Ablation and thermal effect regions on the various 
HS images in the spectral range.

The reflectance spectrum signature of each pixel 
generated from the thermal and ablated regions of a liver 
tissue surface was separated and used to compute a 
normal reflectance range. The degree and level of 
thermal effect to the tissue could be highlighted 
according to the spectrum wavelength to distinguish the 
selective regions (ablated, thermal manipulated, and 
normal tissues). The spectral reflectance signatures were 
measured and evaluated from the mean of the three 
different regions on the investigated liver tissue sample, 
as illustrated in Fig. 4(a). 

The deliberate optical spectrum of the investigated 
liver sample over the wavelength spectrum 
400~1000 nm. The experiment was exploited utilizing  
ex vivo bovine liver tissue, where captured HSI is 
scanned and segmented, selecting specific regions to 
measure the optical properties of the ablation region and 
another region around it for measuring the thermal 
consequence to the normal tissue, as shown in the pixel 
identification in Fig. 4(a). 
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Fig. 6 The bar plot which highlighted the contrast between each region (normal, thermal, and ablated) districts in the 
investigated ex vivo Liver Sample #1. 

	

Fig. 7 (a) The original image at wavelength 900 nm of the investigated liver tissue Sample #1 before image contrast 
enhancement; (b) the enhanced image contrast utilizing the Top-hat and Bottom-hat transforms; (c) the histogram which 
reveals the contrast of the original image with the green bars and the enhanced image contrast with the purple bars. 

The measured diffuse reflectance (Ŗd) of the selected 
regions (normal, thermal, and ablated) were plotted in the 
graph illustrating the distinction shift of the wavelength 

between the normal tissue and ablated signature, as 
demonstrated in Fig. 4(b). The blue pixel demonstrates 
the diffuse reflection (Ŗd) of the normal tissue which is 
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not affected with the thermal region where it is presented 
in the graph by the blue solid line; the red pixel 
representing the thermal regions and plotted in the graph 
with the red solid line, additionally the black pixel 
represent the ablated region with a black solid line in the 
graph. 

To avoid the time-consuming of the 447 spectral 
images of the investigated sample, we select the Ten 
images of the investigated sample after ablation over the 
spectrum (400~1000 nm) with 50 nm resolution. We 
noticed visually that to differentiate between the normal 
and the thermal region was more identified in the 
spectrum (550~650 nm). However, to segregate between 
the normal and the ablated regions was highlighted in the 
wavelength (850~950 nm), as liver Sample #1 illustrated 
in Fig. 5, liver Sample #4 in Fig. A3, and liver Sample #5 
in Fig. A4 at the Appendix. 

The bar chart highlighted the contrast between the 
investigated ex vivo liver sample regions (normal, 
thermal, and ablated). The wavelength (600 nm) shows 
high contrast between the normal and the thermal 
regions. On the other hand, at wavelength (900 nm) 
represents high contrast between the normal and the 
ablated regions, although discriminate between the 
thermal and ablated regions, as more clarified in Fig. 6. 

Selecting the optimum spectral image (900 nm) from 
the bar plot of Fig. 6, which could discriminate between 
(normal / ablated) regions, additionally between 
(thermal / ablated) regions to the original image utilized 
with the custom processing algorithm to increase the 
image contrast then image clustering. 

To validate the increment of the image contrast we 
utilize the Histogram chart. The original image of the 
investigated liver tissue at spectral wavelenght (900 nm), 
is presented in Fig. 7(a) that is drawn in the histogram 
chart with green bars. Then, the enhanced image 
displayed in Fig. 7(b) was clearly highlighted the stretch 
of the histogram bars drawn in purple, as illustrated in 
Fig. 7(c). Furthermore, we apply the same procedure on 
the additional experimental investigation liver tissue 
samples, where Sample #4 and Sample #5 after ablation 
and slicing had been displayed in Fig. A5 and Fig. A6, 
respectively in the Appendix. 

Fig. 8 represents the custom algorithm processing, 
where the selected optimum spectral image (900 nm) as 
the original image. Which could discriminate between 
(normal / ablated) and additionally between 
(thermal / ablated) regions, as displayed in Fig. 8(a). 
Increasing the image contrast utilizing the “Top-hat 
Transform” and “Bottom-hat Transform”, as shown in 
Fig. 8(b) and Fig. 8(c), respectively. The image outcome 
in the Fig. 8(d) is the high contrast image. Next, this high 
contrast image with the “Watershed segmentation”, as 
shown in Fig. 8(e) was used. Finally, there are the 
delineation of the ablation region in red contour and the 
thermally affected region in blue contour, as displayed in 
Fig. 8(f). Moreover, to validate the custom algorithm 
processing, we apply the same steps on the additional 
experimental investigation liver tissue samples, where 
Sample #4 and Sample #5 after ablation and slicing had 
been displayed in Fig. A7 and Fig. A8, respectively in the 
Appendix. 
 

	

Fig. 8 The investigated liver tissue Sample #1; (a) the acquired hyperspectral image at 900 nm; (b) the image contrast 
enhancement after top-hat transforms; (c) the image contrast enhancement after bottom-hat transforms; (d) the enhanced 
contrast image; (e) the final complement enhancement image; (f) the delineation contour for the ablation and thermally 
affected region in red and blue, respectively. 
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4 Discussion 

The non-invasive thermal ablation such as (RFA, MWA, 
and Laser Ablation) is the leading therapeutic equipment 
for un-resection liver tumors. The thermal observation 
with the well-chosen image‑guided system is vital to 
achieving a fruitful removal of tumors with the least 
possible thermal damage of liver tissues [75–78].  

The presented approach setup utilizing HS camera 
aims to measure the diffuse reflectance (Ŗd) of the 
selected regions (normal, thermal, and ablated) for the 
investigated ex vivo liver Sample #1. The scanned HS 
image cube over the spectral range (400~1000 nm) shows 
a different spectral signature for each region, as displayed 
in Fig. 4. 

To reduce the time of image processing for the 
investigated cube, we select from the 447 spectral 
channel, ten images in the wavelength range 
(450 ~ 900 nm) with 50 nm resolution. Although, from 
visual inspection, it was clear that the wavelength range 
(550 ~ 650 nm) was highly identifying between the 
normal and the thermal region. However, wavelength 
(850 ~ 950 nm) highlights more the contrast between the 
normal and ablated regions, as liver Sample #1 illustrated 
in Fig. 5, liver Sample #4 in Fig. A3, and liver Sample #5 
in Fig. A4 at the Appendix. 

Demonstrating these results by utilizing the 
histogram in the appearance of a bar graph to highlight 
the contrast between the investigated ex vivo liver sample 
regions (normal, thermal, and ablated). Wavelength 
(600 nm) represents a high contrast between the normal 
and the thermal regions. Contrariwise, at a wavelength 
(900 nm) represents high contrast between the normal 
and the ablated regions, as shown in Fig. 6. 

Next, to verify the experimental results we exploited 
the statistical analysis of the measured diffuse reflectance 
(Ŗd) for the investigated samples. Which, demonstrates a 
high sample variance (Ŝv) between normal and thermal 
regions at a wavelength (600 nm). However, the 
wavelength (900 nm) shows a high variance between 
both the normal / ablated and ablated / thermal regions, 
as represented in Table 1. 

Selecting the optimum spectral image (900 nm) 
which could discriminate between (normal / ablated) 
regions, additionally between (thermal / ablated) regions 
to the original image utilized with the custom processing 
algorithm to increase the image contrast then image 
clustering. 

To verify the enhancement of the image contrast we 
utilize the histogram chart, as shown in Fig. 7. The 
original image of the investigated liver tissue at spectral 
image (900 nm), is presented in Fig. 7(a) that is was 
drawn in the histogram chart with green bars. The 
enhanced image displayed in Fig. 7(b) was clearly 
highlighted the stretch of the histogram bars drawn in 
purple, as illustrated in Fig. 7(c). Furthermore, for more 
validation to the algorithm steps, we apply the same 
procedure on the additional experimental investigation 
liver tissue samples, where Sample #4 and Sample #5 

after ablation and slicing had been displayed in Fig. A5 
and Fig. A6, respectively in the Appendix. 

The optimum spectral image at (900 nm) was selected 
and processed by the custom algorithm, to discriminate 
mainly between (Normal / Ablated), then classify 
(Thermal / Ablated) regions. To enhance the image 
contrast, we exploited the “Top-hat Transform” and 
“Bottom-hat Transform”, as shown in Fig. 8(b) and  
Fig. 8(c), respectively. The outcome improved image, as 
presented in Fig. 8(d) was processed utilizing the 
“Watershed segmentation”, as shown in Fig. 8(e). 
Furthermore, the delineation of the ablation and 
thermally affected regions were displayed in Fig. 8(f) and 
identified with red and blue contours, respectively. 
Finally, for more validation to the algorithm process, we 
repeat the experimental investigation on additional liver 
samples, as shown in Fig. A7 and Fig. A8 in the 
Appendix, for sample #4 and sample #5, respectively. 

5 Conclusion 

In brief, the represented approach reveals the 
hyperspectral camera capabilities to provide precise 
information for surgeons by early delineation to the 
detected thermal effects to avoid overheating ablation. 
This overheating may lead to cell necrosis due to the 
inaccuracy of the exploratory modality used, or the lack 
of experience. Hyperspectral imaging is a prevailing tool 
in perception the thermal ablation with the least time, 
however, it cost too much in regards to the commercial 
CCD camera and it can't work progressively as the 
spectral cube consumes more time for image analysis 
over the 447 frames and image processing. To reduce the 
time expenses for HSI data processing we were able to 
identify a spectral band, centered at 600 nm, to 
discriminate between the normal and the thermally 
ablated regions Moreover, at the spectral band centered 
at 900 nm a high contrast was achieved between the 
normal and the ablated regions. Therefore, it would be 
possible in the future work to provide direct feedback on 
the resection edges to the specialist during surgery. 
Along these lines, the subsequent stage is to approve the 
procedure as an edge evaluation method during liver 
tumor surgery. 
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