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Abstract

Let Tn be the semigroup of full transformation on a finite set n. Then, a map α ∈ Tn is said
to be a contraction, if for all x, y ∈ Xn, |xα − yα| ≤ |x − y|. Let CT n denote the subsemigroup
of all contraction maps in Tn. In this paper we calculated the rank of the subsemigroup of CT n

generated by elements of defect one, where the defect of α ∈ CT n is defined to be the cardinality of
the set Xn\im(α) and rank of a semigroup is the smallest number of generators for the semigroup.
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1 Introduction

Let Xn = {1, 2, . . . , n} be under its natural order. Let Sn and Tn denote respectively, the symmetric
group consisting of all permutations of Xn, and the full transformation semigroup consisting of all
transformations of Xn. The importance of the study of Tn, as naturally occurring semigroup, is
justified by its universal property that every finite semigroup is embeddable in some Tn, which is
analogous to Cayley’s theorem for symmetric group Sn. Thus, studying certain subsemigroups of
Tn will be of great importance in the theory of semigroup. Many subsemigroups of Tn, such as the
subsemigroups of order-preserving and order-decreasing elements of Tn, have been considered by
many authors, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9].

Umar [9] showed that every element of S−
n , the subsemigroup of all order-decreasing elements

of Tn, is expressible as a product of idempotents. [5] calculated the rank and idempotent rank
of the subsemigroup of order-preserving element (On) to be n and 2(n − 1) respectively. Zhao
[10] completely described maximal regular subsemibands of the two sided ideal of On. See also
[1, 2, 5, 11, 12, 13]. for other algebraic properties in the semigroupOn and some of its subsemigroups.

A map α in Tn is said to be a contraction, if |xα − yα| ≤ |x − y|, for all x, y ∈ Xn. The sets
of all contraction maps in Tn, denoted by CT n, is a subsemigroup of Tn. Likewise, the set of all
order-preserving contraction maps in Tn is a subsemigroup of Tn and is denoted by OCT n. The
name contraction map first appeared in [14], but algebraic and combinatorial study of the semigroup
OCT n were initiated in [15]. Order and regularity in the semigroup CT n were investigated in [15].
Garba et al. [4] characterised Green’s and starred Green’s relations of the subsemigroups CT n

and OCT n. For an α ∈ Tn, the height and defect of α are defined to be the cardinalities of the
sets im(α) and Xn \ im(α) respectively. In this paper, we obtain the rank of the subsemigroup
of CT n generated by elements of defect one, which is the smallest number of generators for the
subsemigroup.

2 Preliminaries

Let Sn and Tn be the symmetric group and full transformation semigroup on Xn = {1, 2, . . . , n},
respectively. Let Singn = Tn \ Sn be the semigroup of all singular self-maps of Xn and let

CT n = {α ∈ Singn : (∀x, y ∈ Xn)|xα− yα| ≤ |x− y|} (2.1)

be the subsemigroup of Singn consisting of all contraction maps. We record the following definition
and characterisation of contraction maps from [4].

Definition 2.1. Let A be a subset of Xn and let {A1, A2, . . . , Ar} be a partition of Xn. Then A
will be called convex, if for all x, y ∈ Xn, (x, y ∈ A and x ≤ z ≤ y) =⇒ z ∈ A. A is called a
transversal of {A1, A2, . . . , Ar} if |A| = r and each Ai (1 ≤ i ≤ r) contains exactly one point of A.
The partition {A1, A2, . . . , Ar} will be called convex partition, if it possesses a convex transversal.

Theorem 2.1. Let α be an element of Tn of height r, where r ≤ n. Then, α is contraction if and
only if

(i) im(α) is a convex subset of Xn, and

(ii) for each i ∈ im(α) and each x ∈ iα−1, if x − 1 ∈ kα−1 and x + 1 ∈ tα−1, then k, t ∈ Φi,
where

Φi =


{i, i+ 1} if i = 1
{i− 1, i, i+ 1} if 1 < i < r
{i− 1, i} if i = r.
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3 Rank of the Subsemigroup

In this section, we determine the rank of the subsemigroup of CT n generated by element of defect
one. We start by noting that CT n like Singn may be partitioned into classes

K1,K2, . . . ,Kn−1,

where, for each 1 ≤ r ≤ n − 1, Kr = {α ∈ CT n : |im(α)| = r}. Our first step is to describe the
subsemigroup of CT n generated by elements of defect one, that is, the semigroup of CT n generated
by Kn−1. For this, we prove the following lemma.

Lemma 3.1. For n ≥ 3, the subsemigroup of CT n generated by Kn−1 is

⟨Kn−1⟩ = {α ∈ CT n : α(1) = α(3) or α(n− 2) = α(n) or α(i) = α(i+ 1), 1 ≤ i ≤ n− 1}.

Proof. Let

α =

(
A1 A2 · · · Ar

a1 a2 · · · ar

)
be an element of height r, where ai+1 = ai + 1, for each 1 ≤ i ≤ r − 1. Since 1 ≤ r ≤ n − 2 and
n ≥ 3, there must exist a block Ai for which |Ai| ≥ 2. We consider three cases as follows:

Case I. If i, i+ 1 ∈ Aj , 1 ≤ j ≤ r, then α = βγ, where

β =

(
1 2 · · · i− 1 {i, i+ 1} i+ 2 · · · n
1 2 · · · i− 1 i i+ 1 · · · n− 1

)
,

and for all x ∈ Xn,

xγ =


α(x), 1 ≤ x ≤ i

α(x+ 1), i+ 1 ≤ x ≤ n− 1

ar + 1, x = n.

Case II. If 1, 3 ∈ Aj , 1 ≤ j ≤ r, then α = βγ, where

β =

(
{1, 3} 2 4 · · · n
2 3 4 · · · n

)
,

and for all x ∈ Xn,

xγ =


x, x = 1

α(x− 1), x = 2, 3

α(x), 4 ≤ x ≤ n.

Case III. If n− 2, n ∈ Aj , 1 ≤ j ≤ r, then α = βγ, where

β =

(
1 2 · · · n− 3 n− 1 {n− 2, n}
1 2 · · · n− 3 n− 2 n− 1

)
,

and for all x ∈ Xn,

xγ =


α(x), 1 ≤ x ≤ n− 3

α(x+ 1), x = n− 2, n− 1

ar + 1, x = n.

Thus,

⟨Kn−1⟩ ⊇ {α ∈ CT n : α(1) = α(3) or α(n− 2) = α(n) or α(i) = α(i+ 1), 1 ≤ i ≤ n− 1}.
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In order to establish the opposite inclusion, we note that, if

α /∈ {α ∈ CT n : α(1) = α(3) or α(n− 2) = α(n) or α(i) = α(i+ 1), 1 ≤ i ≤ n− 1},

then α /∈ ⟨Kn−1⟩. For if α = β1β2 · · ·βk with βj ∈ Kn−1 (1 ≤ j ≤ k), then by Theorem 2.1, each
βj must possesses as its block 1, 3 or n− 2, n or i, i+ 1 (for exactly one i with 1 ≤ i ≤ k). But this
clearly contradicts the choice of

α /∈ {α ∈ CT n : α(1) = α(3) or α(n− 2) = α(n) or α(i) = α(i+ 1), 1 ≤ i ≤ n− 1}.

Now, since |im(αβ)| ≤ min{|im(α), im(β)|} (for each α ∈ CT n), a set of elements in Kn−1 generates
⟨Kn−1⟩ if and only if it generates Kn−1. Thus, rank(Kn−1) = rank(⟨Kn−1⟩).

Using Theorem 2.1, notice that the possible ker(α)-classes for elements of Kn−1 are

|1, 2|, |1, 3|, |2, 3|, |3, 4|, |4, 5|, . . . , |n− 2, n− 1|, |n− 2, n|, |n− 1, n|,

where |i, j| denotes the equivalence on Xn whose sole non-singleton class is {i, j}. Again, by
Theorem 2.1, the possible image sets for elements in Kn−1 are Xn \ {n} = {1, 2, . . . , n − 1} and
Xn \ {1} = {2, 3, . . . , n}. Thus, since corresponding to each of the possible kernel class |i, j|, there
are four maps in Kn−1, we see that |Kn−1| = 4(n+ 1).

Now, let

δ1,2 =

(
{1, 2} 3 · · · n
1 2 · · · n− 1

)
,

δ1,3 =

(
2 {1, 3} · · · n
1 2 · · · n− 1

)
,

δi,i+1 =

(
1 2 · · · i− 1 {i, i+ 1} i+ 2 · · · n
1 2 · · · i− 1 i i+ 1 · · · n− 1

)
(2 ≤ i ≤ n− 2),

δn−2,n =

(
n− 1 {n− 2, n} n− 3 · · · 1
2 3 4 · · · n

)
,

δn−1,n =

(
{n− 1, n} n− 2 · · · 1

2 3 · · · n

)
,

γ1,2 =

(
n n− 1 · · · 3 {1, 2}
2 3 · · · n− 1 n

)
,

γ1,3 =

(
n n− 1 · · · {1, 3} 2
2 3 · · · n− 1 n

)
,

γi,i+1 =

(
1 2 · · · i− 1 {i, i+ 1} i+ 2 · · · n

n− 1 n− 2 · · · i+ 1 i i− 1 · · · 1

)
(2 ≤ i ≤ n− 2),

γn−2,n =

(
n− 1 {n− 2, n} · · · 2 1
1 2 · · · n− 2 n− 1

)
and

γn−1,n =

(
{n− 1, n} n− 2 · · · 2 1

1 2 · · · n− 2 n− 1

)
.

Also, let

δ′1,2 =

(
n n− 1 · · · 3 {1, 2}
1 2 · · · n− 2 n− 1

)
,
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δ′1,3 =

(
n n− 1 · · · {1, 3} 2
1 2 · · · n− 2 n− 1

)
,

δ′i,i+1 =

(
n n− 1 · · · i+ 2 {i, i+ 1} i− 1 · · · 1
1 2 · · · i− 1 i i+ 1 · · · n− 1

)
(2 ≤ i ≤ n− 2),

δ′n−2,n =

(
1 · · · n− 3 {n− 2, n} n− 1
2 · · · n− 2 n− 1 n

)
,

δ′n−1,n =

(
1 · · · n− 2 {n− 1, n}
2 · · · n− 1 n

)
,

γ′
1,2 =

(
{1, 2} 3 · · · n
2 3 · · · n

)
,

γ′
1,3 =

(
2 {1, 3} 4 · · · n
2 3 4 · · · n

)
,

γ′
i,i+1 =

(
n n− 1 · · · i+ 2 {i, i+ 1} i− 1 · · · 1

n− 1 n− 2 · · · i+ 1 i i− 1 · · · 1

)
(2 ≤ i ≤ n− 2),

γ′
n−2,n =

(
1 · · · n− 3 {n− 2, n} n− 1
1 · · · n− 3 n− 2 n− 1

)
and

γ′
n−1,n =

(
1 · · · n− 2 {n− 1, n}
1 · · · n− 2 n− 1

)
.

Then,

Kn−1 = {δ1,2, δ1,3, δi,i+1, δn−2,n, δn−1,n, δ
′
1,2, δ

′
1,3, δ

′
i,i+1, δ

′
n−2,n, δ

′
n−1,n, γ1,2,

γ1,3, γi,i+1, γn−2,n, γn−1,n, γ
′
1,2, γ

′
1,3, γ

′
i,i+1, γ

′
n−2,n, γ

′
n−1,n : 2 ≤ i ≤ n− 2}.

Next, we have

Lemma 3.2. Kn−1 ⊆ ⟨δ1,2, δ1,3, δ2,3, δ3,4, . . . , δn−2,n−1, δn−2,n, δn−1,n⟩.

Proof. This is base on a simple observation that

δ1,2δn−1,n = γ1,2, δ1,3δn−1,n = γ1,3,

δn−2,nδ1,3 = γn−2,n, δn−1,nδ1,3 = γn−1,n,

γ1,2δ1,2 = δ′1,2, γ1,3δ
′
1,2 = δ′1,3,

γn−2,nδn−2,n = δ′n−2,n, δn−1,nγ1,2 = δ′n−1,n,

γ2
1,2 = γ′

1,2, γ2
1,3 = γ′

1,3,

γ2
n−1,n = γ′

n−1,n, γ2
n−2,n = γ′

n−2,n,

δi,i+1δ
′
n−1,n = γi,i+1, γi,i+1δ

′
1,2 = δ′i,i+1,

δi,i+1δn−1,n = γ′
i,i+1.

Hence we have proved the next result.

Lemma 3.3. rank(⟨Kn−1⟩) ≤ n+ 1.

Now, it follows that any generating set for Kn−1 (or ⟨Kn−1⟩) must pick from each of the possible
Kernel classes and also, from each of the possible image sets in Kn−1. Thus

rank(⟨Kn−1⟩) ≥ n+ 1.

This together with Lemma 3.3 give the following theorem.

Theorem 3.4. For any n ≥ 3, rank(⟨Kn−1⟩) = n+ 1.
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4 Conclusion

The set of all elements of height one in the semigroup CT n, of all full contraction maps of a finite set,
has been found to generate only a proper subsemigroup of CT n. The subsemigroup was described
and the minimum cardinality for its generating set is obtained to be equal to n+ 1.
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