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Abstract

We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated
collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case,
the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is
analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality.
Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of
the total energy has the scaling k−3/2, while the difference between the magnetic and electric energies, the so-called
residual energy, has the scaling k−2.4. The electric and magnetic fluctuations at scale ℓ exhibit dynamic alignment
with the alignment angle scaling close to f µ ℓcos ℓ

1 4. At scales smaller than the (relativistic) plasma inertial
scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens to k−3.5.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Relativistic fluid dynamics (1389)

1. Introduction

Relativistic plasma turbulence may be present in astrophy-
sical objects, such as jets from active galactic nuclei, pulsar
wind nebulae, magnetospheres of stars, and accretion disks. In
particular, interest has been attracted to the magnetically
dominated regime, where the magnetic energy exceeds the rest-
mass energy of the plasma. It has been discovered that such
turbulence leads to efficient energization of plasma particles.
This leads not only to thermal plasma heating but also to
particles accelerating to ultrarelativistic energies, a process
manifested in power-law tails of the particle energy distribution
functions (Zhdankin et al. 2017, 2018a, 2018b; Comisso &
Sironi 2018, 2019; Zhdankin et al. 2019; Demidem et al. 2020;
Wong et al. 2020; Chernoglazov et al. 2021; Comisso &
Sironi 2021; Nättilä & Beloborodov 2021; Vega et al. 2021;
Zhdankin et al. 2021; Nättilä & Beloborodov 2022). In this
respect, magnetically dominated relativistic turbulence can be
considered as a mechanism of particle acceleration comple-
mentary to previously studied particle acceleration by colli-
sionless shocks or magnetic reconnection events (e.g.,
Marcowith et al. 2016; Guo et al. 2020).

Numerical studies indicate that particle energization cru-
cially depends on the properties of relativistic plasma
turbulence itself. Recent numerical and phenomenological
consideration suggests that initially ultrarelativistic large-scale
(outer-scale) turbulent fluctuations tend to become mildly
relativistic in a few turnover times, whereas most of the energy
of large-scale fluctuations is converted into thermal energy of
plasma particles so that the plasma temperature becomes
ultrarelativistic. Moreover, the magnetic fluctuations exhibit
Kolmogorov-like power-law spectra, bearing some similarity to
the nonrelativistic case (e.g., Zhdankin et al. 2018b; Comisso &
Sironi 2019; Vega et al. 2021).

Let us assume that a plasma is immersed in a uniform
background magnetic field B0 and denote the typical (rms)

strength of magnetic fluctuations as δB0. The magnetization
parameter related to the magnetic guide field characterizes the
ratio of the magnetic energy to the kinetic energy of the plasma
particles. In the relativistic case, it may be estimated as
s p g~ B n mc40

2 2( ), where n is the average number density of
the plasma particles, m is their mass, and γ is the typical
gamma factor of their thermal distribution. In this work, we
concentrate on the regime σ? 1 and B0? δB0. This may
correspond to the case when a strong guide field is imposed by
external sources (e.g., magnetospheres) or when a small
subregion of a turbulent domain is considered where magnetic
fluctuations are much smaller than the mean magnetic field.
Recent numerical and analytical studies of relativistic plasma

turbulence using magnetohydrodynamic (MHD) approximation
suggested analogies with the nonrelativistic case, such as the
description in terms of the Elsässer fields, the similarities in the
power-law exponents of the spectra of magnetic fluctuations,
and the existence of dynamic alignment between magnetic and
velocity fields (Chernoglazov et al. 2021; TenBarge et al.
2021). It was also noted that the relative magnitude of the
electric field fluctuations in this case exceeds that of the kinetic
fluctuations (Chernoglazov et al. 2021; Vega et al. 2021).
In this work, we study turbulence in a magnetically

dominated relativistic collisionless plasma. We derive two-
fluid equations governing the dynamics of Alfvénic fluctua-
tions and compare their predictions to first-principle kinetic
particle-in-cell (PIC) simulations. We demonstrate that there is
a remarkable mathematical correspondence of the derived
equations with those describing the dynamics of a nonrelati-
vistic plasma, which suggests that a similarity exists between
the properties of turbulence in relativistic and nonrelativistic
plasmas. Such a similarity may look rather counterintuitive
from the physical point of view, though, since in classical
nonrelativistic MHD turbulence, electric fluctuations are
negligible, while magnetic fluctuations are approximately
equipartitioned with fluid motions. In stark contrast with
nonrelativistic cases, the turbulence discussed here is energe-
tically dominated by fluctuations of the electromagnetic field
alone.
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To resolve this seeming controversy, we note that non-
relativistic plasma dynamics may, in fact, also contain a regime
where electric field fluctuations are relatively strong as
compared to kinetic fluctuations. Such a regime corresponds
to broken plasma quasi-neutrality, and it is rarely discussed in
nonrelativistic literature due to its limited applicability to
practical systems. However, it turns out to be valuable for
understanding magnetically dominated relativistic turbulence.
The revealed physical similarity between relativistic and
nonrelativistic cases allows us to address the total energy
spectrum of relativistic turbulence (the sum of electric and
magnetic spectra) in both Alfvén and inertial Alfvén intervals,
the scale-dependent angular alignment between electric and
magnetic fluctuations, and the spectrum of the residual energy
(the difference between the magnetic and electric spectra).

2. Alfvén Dynamics of Magnetically Dominated Plasma

Consider the nonrelativistic motion of a relativistically hot
collisionless plasma with temperature Tα?mαc

2, where
α= {e, i} denotes the types of particles. The momentum
equation takes the form (e.g., Mihalas & Mihalas 1999)
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where òα= nαmαc
2 + uα + pα is the enthalpy density, nα is the

particle number density, uα is the internal energy density, and
pα is the pressure of the particles. For simplicity, we assume
isotropic pressure. For the ultrarelativistic temperatures of the
species, we can approximate òα≈ uα + pα≈ 4pα. In addition,
one can assume some equation of state, for instance, the
adiabatic law of relativistically hot plasma, µa ap n 4 3.

We now assume that the fluctuations of the magnetic and
electric fields are much weaker than the large-scale uniform
magnetic field =B B z0 0 ˆ. We will be interested in Alfvénic
plasma fluctuations that are relatively low frequency as
compared to cyclotron frequencies, ω=Ωα/γα, where γα is
the typical gamma factor of particle thermal motion, and Ωα is
the nonrelativistic gyrofrequency. We also impose a self-
consistent assumption that the Fourier spectra of the fields are
anisotropic in the Fourier space with respect to the background
magnetic field B0, k∥= k⊥, and the fluctuations obey the
critical balance condition δB/B0∼ k∥/k⊥= 1 (e.g., Goldreich
& Sridhar 1995).

The following derivation is analogous to the procedure
developed for the nonrelativistic case (e.g., Chen & Boldyrev
2017; Loureiro & Boldyrev 2018; Milanese et al. 2020;
Boldyrev et al. 2021). Here we outline its main steps; the
details can be found in the above references. As follows from
the momentum equation, to the leading order in the small
parameter ωγα/Ωα, the particle motion is the E-cross-B drift,
while to the next order, it is the polarization drift,

= + ´a
a

a a
^


v v B v

n q B c

d

dt
, 2E

E
E, 2

( )

where vE= c(E×B)/B2, and the time derivative is
dE/dt≡∂/∂t+ vE ·∇.3 The field-parallel component of the
velocity field is expressed through the parallel electric current,

nαvα,∥= Jα,∥/qα. These velocities are substituted into the
continuity equation,
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To the leading order in magnetic, electric, and density
fluctuations, one then obtains
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In this equation, n0 is the unperturbed density of each species,
δnα= nα− n0 is the corresponding density perturbation, and f is
the electric potential, /f= - - ¶ ¶E A t

c

1 . The parallel
gradient is taken along the direction of the magnetic field,

/   = ¶ ¶ - ´ z z A
B z
1

0
( ˆ ) · , where the field-perpendicular

magnetic perturbation is expressed as d = - ´B̂ z Azˆ . In
order to find the electric current, we turn to the magnetic field–
parallel component of the momentum equation:


¶

¶
+ =

-
+a

a
a

a

a a

a
^

 





v v
v

t

p

c

n q

c
E . 5E

,
, 2 2

( · ) ( )

We now multiply each of Equations (4) and (5) by n0qα and
sum over particle species. As a result, Equation (4) turns into
the charge conservation law,
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where ρ= qiδni+ qeδne is the electric charge density,
J∥= Je,∥+ Ji,∥ is the parallel current, and = +   2i e0 ,0 ,0( )
is the mean unperturbed enthalpy. To simplify the formulae, we
have assumed without loss of generality that qi= |qe|≡ q. We
may also assume that in the relativistic case, the unperturbed
enthalpy is the same for both species, òi,0= òe,0= ò0. In the
ultrarelativistic limit, ò0= 4p0. The parallel momentum
(Equation (5) will then lead to

d
¶

¶
+ =

-
 +^

 


  v
J

t
J

qn c
p

n c q
E

2
, 7E

0
2

0

0
2 2 2

0
( · ) ( )

where δp= δpi− δpe denotes the pressure imbalance.
We note (see also Vega et al. 2021) that the terms containing

the electric charge density ρ and pressure imbalance δp in
Equations (6) and (7) reflect the deviation of the plasma
fluctuations from quasi-neutrality, that is, from the condition
δni= δne. It is easy to see by using the Gauss law, −∇2f=
4πρ, that these terms are relatively small in the case of weak
magnetization, that is, when s p~  B 8 10

2
0( ) . In the

opposite case of strong magnetization that we consider in this
work, the deviation from quasi-neutrality is essential, and as a
result, both the electric charge and pressure imbalance become
dynamically significant. In the case of a nonrelativistic

3 We did not include the diamagnetic drift proportional to ´ az pˆ in the
perpendicular velocity (Equation (2)), since such a drift does not lead to particle
transport and should not contribute to the continuity equation.

2

The Astrophysical Journal Letters, 931:L10 (6pp), 2022 May 20 Vega, Boldyrev, & Roytershteyn



electron–proton plasma, we need to replace ò0→ n0mic
2/2, and

the magnetization parameter turns into the so-called quasi-
neutrality parameter, w l rW =i pi i i

2 2 2 2. Here λi is the ion
Debye scale, ρi is the gyroscale, and ωpi is the ion plasma
frequency. Therefore, wWi pi

2 2 is the nonrelativistic analog of
relativistic magnetization σ.

In order to close Equations (6) and (7), we replace the charge
density by using the Gauss law, r p f= - ^1 4 2( ) ; express
the parallel electric current as p= - ^J c A4 z

2( ) ; and use the
adiabatic law for each particle species to evaluate the pressure
gradients, so that

d d d
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Here we assume that the unperturbed pressure is the same for
both species, p0= pi,0= pe,0. Finally, we introduce the new
variables for the scalar and vector potentials, f f= c B0

˜ and
p= A A c 8z z 0˜ . Below, we will use only these variables and

omit the overtilde sign. Substituting these expressions into
Equations (6) and (7), we finally obtain the system of equations
describing the Alfvén dynamics of a relativistic plasma in both
MHD and inertial regimes:
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where p= v cB 8A 0 0( ) is the Alfvén speed,4 =d

p n q80 0
2 2( ) is the relativistic inertial length, and the field-

parallel gradient has the form
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The dispersion relation of the linear waves described by
Equations (9) and (10) is
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which can be termed the relativistic inertial Alfvén waves.
Except for the very last term in Equation (10), describing the

relativistic pressure contribution, the system of Equations (9)
and (10) is analogous to the nonrelativistic case. The
nonrelativistic case is recovered by replacing the Alfvén speed
and the inertial length by their nonrelativistic counterparts by
means of the substitution ò0→ n0mic

2/2. It may also be
instructive to compare the dispersion relation (Equation (12))
with the dispersion relation of nonrelativistic inertial kinetic
Alfvén waves (e.g., Streltsov & Lotko 1995; Lysak &
Lotko 1996; Boldyrev et al. 2021, Equation (19)), where,

similarly, the kinetic correction coming from thermal particle
motion enters the numerator, while the inertial correction
appears in the denominator. In our relativistic case, these two
corrections are necessarily on the same order. We also note
that, similarly to the previous study (TenBarge et al. 2021), at
large scales ^ k d 12 2 , Equations (9) and (10) describe the
shear Alfvén waves in a relativistically hot plasma, and they are
mathematically analogous to the equations of reduced MHD.
Finally, as can be checked directly, Equations (9) and (10)

conserve two quadratic integrals, the energy
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3. Numerical Results

In the hydrodynamic range of scales, ^ k d 12 2 , the energy
integral becomes
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where, in the second expression, we have restored the
corresponding physical fields. We see that the ratio of the
electric to kinetic energy is given by the parameter

p s= ~v c B 8A
2 2

0
2

0( ) . In both relativistic and nonrelativis-
tic cases, when σ? 1, the charge fluctuations are significant,
and the electric energy dominates the kinetic energy. Therefore,
the energy of the fluctuations is mostly contained in magnetic
and electric fields.
In this limit, the system of Equations (9) and (10) is

mathematically analogous to the equations of nonrelativistic
reduced MHD, with the only difference that in the magnetically
dominated case, the field f in these equations should be
associated with the intensity of electric rather than kinetic
fluctuations. Based on this analogy, we may conjecture that the
spectrum of the total energy of relativistic magnetically
dominated plasma turbulence, the spectrum of its residual
energy, and the alignment angle of turbulent fluctuations
should be similar to their reduced MHD counterparts when
reinterpreted in terms of magnetic and electric fields as
discussed above. Here we analyze these spectra using kinetic
PIC simulations of a relativistic collisionless plasma.
We numerically study decaying 2D turbulence in a pair

plasma, where the imposed uniform magnetic field =B B z0 0 ˆ is
much stronger than the initial magnetic perturbations. We use
the fully relativistic PIC code VPIC (Bowers et al. 2008). The
fluctuating fields (magnetic, electric, and particle velocities)
have three vector components but depend on only two spatial
coordinates, x and y. Similar to our previous study (Vega et al.
2021), we denote the rms of the initial magnetic perturbations
as δB0= 〈δB2(x, t= 0)〉1/2 and define the two magnetization

4 In relativistic studies, it is common to use the relativistic Alfvén speed,
defined as = +v v v c1A A A

2 2˜ , so that it is always bounded by the speed of
light. In our discussion, we use the quantity vA to make the analogy with the
nonrelativistic case more transparent. The magnetically dominated case
considered in this work corresponds to »v cÃ .
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parameters related to the guide magnetic field and the
fluctuations, respectively:

s
p
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In these formulae, n0 denotes the mean density of each plasma
species, and w0mc

2 is the initial particle enthalpy, with
w0=K3(1/θ0)/K2(1/θ0). Here Kν is the modified Bessel
function of the second kind, and we use the dimensionless
initial temperature parameter θ0= kT0/mc

2. The particle
distribution function is initialized with an isotropic Maxwell–
Jüttner distribution, with the temperature parameter θ0= 0.3.
For such an initialization, w0≈ 1.88.

We use a double-periodic square simulation domain with
dimensions Lx= Ly≈ 2010de, where de is the (nonrelativistic)
inertial scale of the plasma particles. The adopted numerical
resolution is Nx= Ny= 16,640. The simulations have 100
particles per cell per species. The simulation plane is normal to
the uniform magnetic field. The runs are initiated by randomly
phased magnetic fluctuations of the Alfvénic type,

åd d x c= +B x k xB cos , 17
k

k k k( ) ˆ ( · ) ( )

where the wavenumbers are chosen in the interval
k= {2πnx/Ly, 2πny/Ly}, with nx, ny= 1, K, 8, and χk as the
random phases. The field polarizations correspond to the shear
Alfvén modes (e.g., Lemoine et al. 2016; Demidem et al.
2020), x = ´ ´k B k Bk 0 0

ˆ ∣ ∣, and all of the amplitudes δBk

are chosen to be the same.
Table 1 summarizes the simulations discussed in this paper.

As was previously noted in Vega et al. (2021), the bulk
turbulent fluctuations are only mildly relativistic, with an
average Lorentz factor gá ñ 1˜  , while the particles are strongly
relativistic, with an average Lorentz factor 〈γ〉≈ 3.3–8.4. This
is consistent with the phenomenological discussion of Vega
et al. (2021) that as the initially strong magnetic fluctuations
relax, the magnetic energy is mostly converted into heat, rather
than the kinetic energy of collective plasma motion. The
Lorentz factors were measured at a simulation time t= 16l/c,
or about two light-crossing times of the simulation box, where
l= 2π/kx,y(n= 8)= Lx,y/8. By this time, quasi-steady states for
the distributions of fields have been established. The light-
crossing time of the simulation box corresponds to a few large-
scale dynamical times of turbulence, l/v, where v≈ 0.3–0.4c is
the typical velocity of the turbulent fluctuations.

In Figure 1, we present the spectra of the magnetic and
electric fluctuations, as well as the total energy spectrum,

= +^ ^ ^W B Ek k k
2 2∣ ∣ ∣ ∣ . The phase-volume–compensated scaling

of the energy spectrum in the MHD interval of scales k⊥de= 1

is close to p µ^ ^
-

^W k k2k
3 2. Such a spectrum is expected in

nonrelativistic MHD turbulence (e.g., Boldyrev 2006; Mason
et al. 2006; Boldyrev et al. 2009; Mason et al. 2012; Perez et al.
2012; Tobias et al. 2013; Chandran et al. 2015; Chen 2016;
Kasper et al. 2021), where the energy is contained in magnetic
and kinetic fluid fluctuations. We see that it also holds in
relativistic collisionless plasma turbulence dominated by
magnetic and electric fields. Our result is also consistent with
the recent relativistic MHD studies (Chernoglazov et al. 2021;
TenBarge et al. 2021).
At kinetic scales, r^ ^ k d k1 e e

2 2 2 2, the inertial Alfvén

waves are transformed into w = +k v v c1z
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In this asymptotic region, dimensional estimates for turbulent
fluctuations at field-perpendicular scale ℓ give: Az,ℓ∼ fℓ, and
the nonlinear interaction time is estimated as τℓ∼ ℓ

2/fℓ. The
condition of constant flux of the conserved quantity
(Equation (18)) then reads f t =ℓ constℓ ℓ

2 4( ) , which gives
for the scaling of fluctuations fℓ∝ ℓ

2 and the electromagnetic
energy spectrum of relativistic inertial Alfvén waves

p µ^ ^
-

^W k k2k
3. The nonlinear interaction time for such modes

turns out to be independent of scale, which implies that for the
critically balanced cascade, ω∝ 1/τℓ, we have µk constz ; that
is, the cascade proceeds in the field-perpendicular direction.
We note that such a turbulent cascade is somewhat

analogous to the cascade of enstrophy in incompressible
nonrelativistic 2D fluid turbulence. Such a cascade is, however,

Table 1
Parameters of the Runs (Magnetization, Magnetic Field Strengths, and Time
Steps), as well as the Averaged Particle Lorentz Factors γ and Fluid Lorentz

Factors g̃

Run σ0 s0˜ dB B0 0
2( ) ωpeδt 〈γ〉 gá ñ˜

I 90 10 9 0.02 3.30 1.04
II 360 40 9 0.02 8.37 1.08

Note. The time steps are normalized to the nonrelativistic single-species plasma
frequency ωpe.

Figure 1. Magnetic and electric spectra and total electromagnetic energy
spectrum for two different magnetizations. The total energy spectrum
approaches a k−3/2 power law at k⊥de = 1 and a k−3.5 power law at k⊥de ? 1.
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only marginally local, so it depends on the conditions at the
low-k boundary of the inertial interval. Numerical simulations
and experiments typically reveal the spectra steeper than −3 in
this case, unless the formation of large-scale structures is
controlled (suppressed) by some forcing mechanism and/or the
inertial interval is sufficiently large (e.g., Boffetta &
Ecke 2012). Our numerical simulations found a spectral scaling
close to ^

-k 3.5. In addition to the limited separation between the
particle inertial and gyroradius scales and possible spatial
intermittency, in our case, the steepening may also be related to
Landau damping at kinetic scales (e.g., Nättilä & Belobor-
odov 2022), as the phase velocity of the inertial Alfvén waves,
c 3 , is smaller than the thermal speed of the particles, ∼c.

In nonrelativistic MHD turbulence, the magnetic energy is
known to exceed the energy of kinetic fluctuations. Phenom-
enological and numerical considerations demonstrated that the
difference between the magnetic and kinetic energies, the so-
called residual energy, is positive and has a spectrum close to
−2 (e.g., Boldyrev et al. 2011, 2012; Chen et al. 2013). In the
relativistic magnetically dominated case, we may introduce the
analog of residual energy as the difference between the
magnetic and electric energies, = -^ ^ ^R B Ek k k

2 2∣ ∣ ∣ ∣ . This
quantity is measured in Figure 2. In order to compensate for
the overall energy decline in decaying turbulence, we have
normalized the residual energy by the total energy of the
fluctuations and then averaged over several data cubes. A
power-law spectrum is indeed observed; however, the scaling
is slightly steeper than in its nonrelativistic counterpart, more
consistent with p µ^ ^

-
^R k k2k

2.4.
Finally, a characteristic feature of nonrelativistic magnetic

plasma turbulence in the presence of a strong guide field is the
dynamic alignment between the shear Alfvén magnetic and

velocity fluctuations. Such fluctuations become spontaneously
aligned in a turbulent cascade, with the alignment angle scaling
as q µ ℓsin ℓ

1 4 (e.g., Boldyrev 2006; Podesta et al. 2009; Chen
et al. 2011; Perez et al. 2012). Such an alignment progressively
reduces the strength of nonlinear interaction at small scales,
which arguably explains the shallower-than-Kolmogorov
spectrum of turbulent energy, ^

-k 3 2. In the case of magnetically
dominated turbulence, one may similarly expect a scale-
dependent dynamic alignment between the electric and
magnetic field fluctuations,

f
d d
d d

=
á ñ
á ñ

E B

E B
cos , 19ℓ

∣ · ∣
∣ ∣∣ ∣

( )

where ℓ is the scale of the fluctuations in the field-perpendicular
plane, e.g., δB≡B(x+ℓ)−B(x), where ℓ⊥B0. In order to see
whether a similar alignment exists in our numerical simulations
of collisionless relativistic turbulence, we plot the cosine of the
angle fℓ versus scale ℓ in Figure 3. We observe a scaling close
to that of the nonrelativistic case, as well as to the relativistic
MHD case (Chernoglazov et al. 2021). However, we notice that
the scaling varies slightly with the plasma magnetization
parameter σ0; it is slightly shallower in the case of stronger
magnetization, possibly reflecting a shorter inertial range due to
a larger relativistic inertial scale.

4. Discussion

We have presented a numerical and phenomenological study
of relativistic turbulence in a collisionless magnetically
dominated plasma. We proposed that dynamic Equations (9)

Figure 2. Spectra of the normalized residual energy for two different
magnetizations averaged over nine data cubes covering the indicated intervals
of turnover times. The solid lines are shown for the reader’s reference.

Figure 3. Cosine of the alignment angle fℓ between the magnetic and electric
fluctuations in numerical simulations. The results are averaged over nine data
cubes covering the indicated time intervals. The straight lines are shown for
reference.
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and (10) provide a useful phenomenological model for
magnetically dominated relativistic plasma turbulence. Using
the 2D PIC simulations, we demonstrated that in such
turbulence, the energy is contained mostly in collective
magnetic and electric fluctuations. In the MHD range of
scales, ^ k d 1e

2 2 , the total energy (magnetic plus electric)
exhibits a spectrum close to that of Alfvénic turbulence,

p µ^ ^
-

^W k k2k
3 2. In the kinetic range, r^ ^ k d k1 e e

2 2 2 2, the
turbulence is governed by relativistic inertial Alfvén modes,
and the spectrum steepens to approximately ^

-k 3.5.
We further established that in relativistic magnetically

dominated turbulence, there is an excess of magnetic energy
over electric, which becomes progressively smaller at smaller
scales. We propose that this phenomenon is analogous to the
generation of the so-called residual energy, that is, the excess of
magnetic over kinetic energy known in the nonrelativistic
quasi-neutral case. The measured spectrum of the residual
energy is close to p µ^ ^

-
^R k k2k

2.4, which is slightly steeper
than its nonrelativistic counterpart, indicating an interesting
difference with the nonrelativistic case.

An additional intriguing similarity of relativistic turbulence
with the nonrelativistic case is manifested in the presence of the
so-called scale-dependent dynamic alignment between magn-
etic and electric fluctuations. We have found that such
fluctuations become progressively more orthogonal to each
other at smaller scales. The cosine of the angle between the
fluctuations was found to scale close to f µ ℓcos ℓ

0.25. Based
on the analogy with the nonrelativistic case, we proposed that
such an alignment reduces the strength of nonlinear interactions
in the relativistic dynamics, thus explaining the observed −3/2
scaling of the energy spectrum. We also note that the run with a
stronger magnetization resulted in a slightly shallower scaling
of the alignment angle. This may be related to a shorter inertial
interval of turbulence due to a larger relativistic inertial scale of
thermal particles.

Finally, we note that our consideration may provide a useful
framework for phenomenological studies of relativistic mag-
netically dominated plasma turbulence in the presence of a
strong background magnetic field. In particular, it may be
relevant for the analysis of particle heating and acceleration
mediated by such turbulence, as well as the effects of magnetic
reconnection, structure formation, and intermittency generated
by a turbulent cascade.
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