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Abstract

The amplitude of the 11 yr solar cycle is well known to be subject to long-term modulation, including sustained
periods of very low activity known as Grand Minima. Stable long-period cycles found in proxies of solar activity
have given new momentum to the debate about a possible influence of the tiny planetary tidal forcing. Here, we
study the solar cycle by means of a simple zero-dimensional dynamo model, which includes a delay caused by
meridional circulation as well as a quenching of the α-effect at toroidal magnetic fields exceeding an upper
threshold. Fitting this model to the sunspot record, we find a set of parameters close to the bifurcation point at
which two stable oscillatory modes emerge. One mode is a limit cycle resembling normal solar activity including a
characteristic kink in the decaying limb of the cycle. The other mode is a weak sub-threshold cycle that could be
interpreted as Grand Minimum activity. Adding noise to the model, we show that it exhibits Stochastic Resonance,
which means that a weak external modulation can toss the dynamo back and forth between these two modes,
whereby the periodicities of the modulation get strongly amplified.

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Solar cycle (1487)

1. Introduction

It is well known that the Sun’s magnetic activity has a period
of almost 11 yr (the Schwabe cycle) with polarity reversals
around the maximum of each solar cycle. While the amplitudes
of the different cycles may vary a lot, as measured by the
(weighted) number of sunspots, the period around 11 yr is very
stable. Superimposed on this basic 11 yr cycle are longer
cycles, some of which have been known for a long time, such
as the Gleissberg cycle (87 yr) and the Suess-deVries cycle
(208 yr). The former modulates the amplitude of the Schwabe
cycle, whereas the latter might be related to the recurrence of
Grand Minima—time intervals extending over several cycles
with few to no sunspots and much more reduced solar activity
(e.g., McCracken et al. 2013).

The analysis of proxy data such as radio-nuclide time-series
obtained from tree rings and ice cores has revealed the
existence of many more long-period cycles in the history of
magnetic solar activity (Berggren et al. 2009; Steinhilber et al.
2012). It is interesting to note that some of these cycles were
already known from lake sedimentology and dendrochronology
(e.g., Briffa et al. 1992; Kuma et al. 2019). Using high-
precision C14 data, Brehm et al. (2021), Miyahara et al. (2021),
and Usoskin et al. (2021) have recently presented detailed
reconstructions of the history of the solar cycle.

In this Letter we study the variability of solar activity by
means of a simple zero-dimensional dynamo model previously
used by Wilmot-Smith et al. (2006). Despite its simplicity, this
model incorporates two important features of the solar dynamo.
One feature is the limitation of the operation of the α-effect to a
window Bmin< B< Bmax, for the toroidal magnetic field
strength, as suggested by Ferriz-Mas et al. (1994). Adding

sufficient noise to the model, the lower threshold Bmin can lead
to an on–off dynamo resembling realistic solar activity that is
interspersed with Grand Minima (Schmitt et al. 1996). The
second important feature that we consider is a time delay
that accounts for the effect of meridional circulation, a key
ingredient in any Babcock–Leighton (BL) type model (Babcock
1961; Leighton 1969).
The resulting system of delay ordinary differential equations

(ODEs) shows interesting dynamic phenomena, which com-
pletely disappear if the time delay is set to zero. We show that it
exhibits two fundamentally different modes of stable oscilla-
tion, which can co-exist for certain ranges of parameter values.
One mode, which we call the weak mode, is characterized by
frequencies and amplitudes that are subject to periodic or
chaotic modulation, depending on the parameter values. The
fact that chaos can occur in a system of only two coupled ODEs
is indeed due to the delay, which effectively renders the system
infinite-dimensional. For certain parameter ranges, the weak
mode remains mostly below Bmax (hence the name). As Bmax

defines the critical field strength that toroidal flux tubes need to
exceed in order to be able to rise toward the solar surface and
form sunspots, we posit that the weak mode could explain the
mechanism behind Grand Minima, which is in line with the
observation that solar magnetic activity (i.e., the operation of
the solar dynamo) does not stop during these periods (Beer
et al. 1998). The other mode is a stable limit cycle and shows
no modulation. As the amplitude of this mode can be much
larger than Bmax; we call it the strong mode. This mode exhibits
a characteristic kink in its decaying limb, which is also present
in observational sunspot data, and which stems from the
toroidal field exceeding Bmax. This effect has been pointed out
before by Stix (1972).
Within the range of parameters where both stable modes

co-exist, the dynamo can switch easily between them upon
adding sufficient noise to the equations. That is, the dynamo
shows intermittent behavior similar to the one described in
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Schmitt et al. (1996), except that it is Bmax rather than Bmin that
is responsible for this behavior, and the Grand Minima would
correspond to a stable sub-threshold oscillatory mode rather
than the zero mode of the dynamo equations.

Near the bifurcation point where the new oscillatory mode
appears, the basins of attraction of the two modes are
particularly susceptible to external perturbations. This phenom-
enon is known as Stochastic Resonance (Benzi et al. 1981;
McNamara & Wiesenfeld 1989). In recent years some
controversy has arisen around the suggestion that the tidal
effect exerted by the planets might have an influence on the
solar magnetic activity (e.g., Abreu et al. 2012; Stefani et al.
2019, 2020, 2021). Indeed, it is remarkable that many of the
long-period cycles that we find in proxies of solar activity can
also be found in time-series of the torque exerted by the planets
on the Sun (Abreu et al. 2012). This has motivated us to study,
by means of a simple dynamo model, whether a tiny (external)
modulation can imprint its periodicities onto the mode-
switching of the dynamo, whereby they are greatly amplified
by Stochastic Resonance. However, the specific question
whether Stochastic Resonance is actually powerful enough to
amplify the tiny tidal forcing enough to effectively have an
effect on the operation of the dynamo is not addressed in this
Letter and requires further investigation.

2. Stochastic Resonance in BL-type Dynamos

Following Wilmot-Smith et al. (2006) we model the solar
dynamo with two coupled delay ODEs, for the toroidal and
poloidal fields, respectively:
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where Ω0 is a characteristic value of the angular velocity
distribution Ω(r, θ) in the convection zone, L is a characteristic
length of variation, α0 is a characteristic value of the α-effect,
and τ is the diffusion timescale. The two delays T0 and T1
represent the timescales set by meridional circulation and the
rising time of buoyant flux tubes, respectively. The nonlinear
function f (B) essentially restricts the α-effect that keeps the
dynamo alive to a range Bmin B(t) Bmax. Following
Wilmot-Smith et al. (2006), we use the symmetric box-shaped

function (Figure 1)
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and we have fixed the limiting values somewhat arbitrarily to
Bmin= 1 and Bmax= 10.
Equations (1) and (2) can be combined to a second-order

delay ODE, for the dominant toroidal field
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where q= (T0+T1)/τ and we have set the time unit such that
τ= 1. The dimensionless dynamo number  (see e.g.,
Charbonneau 2020) is the ratio of the source terms to the
dissipative terms in the dynamo equations and is expressed as

( )a t
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W
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2

There has been some discussion as to whether the dynamo is
dominated by flux-transport (q< 1, e.g., Wilmot-Smith et al.
2006) or by diffusion (q> 1, e.g., Karak & Choudhuri 2011).
Here we fix q= 0.82, which has been found in an attempt to fit
model (4) to the sunspot record (see Figure 2). However, the
phenomena that we describe here do not depend much on the
particular value of q, and there are other values that lead to
similar fits.
Above Bmax, the rhs of (4) is almost zero, hence the dynamo

turns into a critically damped oscillator when B(t) exceeds
Bmax. For now, let us ignore the lower limit Bmin and consider
f (B) to be a single box stretching from −Bmax to Bmax. While
B(t) remains below Bmax, the system is then almost linear. We
start with a linear stability analysis of the trivial solution
B(t)= 0 of Equation (4). Therefore, we turn Equation (4) into a
first-order equation for ( ) ( ( ) ( ))=x t B t B t, T . The linearized
equation ( f= 1) reads ( ) ( ) ( ) = + -x x xt J t J t q0 1 , with

⎛
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1 0
, 0

0 0
.0 1

With the ansatz x(t)= eλ tx0 we find the characteristic equation,
( )l+ - =l-J e Jdet 0q

0 1 , to be

( )l l+ + + =l-e2 1 0. 6q2

Writing λ= μ+ iν, the stability of the zero solution is
determined by the sign of μ. For the bifurcation point μ= 0,
we derive from (6) the condition for the cycle-frequency ν to be

Figure 1. Function f (B) limiting the alpha effect, with Bmin = 1 and Bmax = 10.

Figure 2. Fit of the sunspot record. The relative delay parameter was found to
be q ≈ 0.82, and the dynamo number » 8.4 was found to be close to the
upper critical point (compare with Figure 3).
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given by equation
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The solution with the lowest value, ν*, defines the critical
dynamo number, at which the zero solution becomes unstable
to be given by

( )n= + 1. 82* *

At this point, Equation (4) has the harmonic solution
B(t)= Asinν*t. However, the amplitude A is unstable. It decays
to zero, for dynamo numbers below  *, and would grow
unbounded for higher values, if it were not for Bmax, which
stabilizes the solution again. Simulations show that, at  *, the
zero solution bifurcates to the harmonic solution B(t)∝ sinν*t,
with amplitude close to Bmax. Further increasing  leads to
periodic and chaotic modulations of both the amplitude and the
period. (Figure 3). This period-doubling route to chaos is a
robust feature of BL-type dynamos, which has been observed
also in simpler iterative map models as well as more
complicated spatially resolved models (Charbonneau et al.
2005). The amplitude-modulations are superimposed to an
increasing trend, starting at around Bmax. The period, on the
other hand, is modulated around the linear solution ν*. For the
sake of simplicity, we refer to this entire mode of oscillation as
the weak mode.

If we introduce Bmin, this generic picture persists. However,
the zero solution remains stable for dynamo numbers beyond
 *. Hence, there is a range of dynamo numbers, roughly
between  * and ( ) f 0* , for which the dynamo admits at
least two stable modes (the weak mode and the zero mode).

For even larger values of the dynamo number, a fundamen-
tally different mode of oscillation emerges (the branch in
Figure 3 above dynamo number » 8.4). This is a mode
where B(t) is above Bmax most of the time and both the
amplitude and the period are constant. We call it the strong
mode. It is the stable limit cycle that appears when we
approximate ( ) ( ) ( )- » -B t q B t qB t in Equation (4). This
approximation is valid for large  , where the cycle period is
much larger than q. For smaller values of  , the approx-
imation fails and the system can no longer be approximated by

a second-order ODE, hence the emergence of the chaotically
modulated weak mode.
The cycles of the strong mode have a characteristic shape,

similar to the large solar cycles that were observed in the
sunspot records (Figure 2): a steep rising limb, followed by a
falling limb with a kink. This shape has been interpreted as an
effect of the B-field exceeding Bmax before by Stix (1972),
albeit with a non-BL-type dynamo model. The fit in Figure 2
has been achieved through optimizing parameters q and  .
Interestingly, the optimized value » 8.4 turned out to be
quite close to the critical point where the strong mode becomes
stable.
The strong and the weak mode can co-exist, over certain

parameter ranges. For the q= 0.82 solution depicted in
Figure 3, we could numerically verify the co-existence of the
strong and the weak mode for dynamo numbers up to » 12.
Adding sufficiently strong (additive) noise to the dynamo
equations allows the system to randomly switch between these
different stable modes of operation. Near the critical points, the
basins of attraction of the modes are particularly susceptible to
perturbations. Hence, near these points, a weak external
modulation can alter the probabilities of mode-switching
substantially and thus lead to a strong amplification of the
cycles that are present in the modulation. We demonstrate this
Stochastic Resonance numerically, operating our dynamo
within the co-existence range of the strong and the weak
mode. Therefore, we add a small periodic modulation, as well
as additive white noise, to the dynamo Equation (4):
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where ò= 0.02 and η(t) is a white noise with co-variance
( ) ( ) ( ) ( )h h s dá ¢ ñ = - ¢t t B t tmax

2 . We choose the driving fre-
quency ωd such that it comprises about 15 dynamo cycles.
Figure 4 shows a typical realization. The dynamo number
= 9.2 lies within the co-existence range of the strong and

the weak mode. The relatively small noise amplitude of

Figure 3. Field amplitudes B2 as a function of the dynamo number  , for
q = 0.82, exhibiting the transition between the weak and the strong mode
around = 8.4. The inset shows the corresponding periods against  (same
units). Gray vertical lines indicate the dynamo number used for the realization
in Figure 4.

Figure 4. Realization from Equation (9), for q = 0.82, = 9.2 and σ = 0.17.
Magnetic energy B2(t) is plotted against time, the units of which are chosen
such that the base period 2π/ν

*

≈ 100 (resulting in τ ≈ 43). Several Grand
Minima-like events are visible. The inset shows the typical shapes of the
cycles, for a time interval exhibiting a mode-switch.
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σ= 0.17 allows for occasional sustained periods of weak
dynamo operation, not unlike the pattern observed in long
records of solar activity derived from radio-nuclides (Steinhilber
et al. 2012). Increasing the noise increases the frequencies
of such Grand Minima-like episodes (not shown). Figure 5
compares the power spectrum of this realization against a
realization without noise, but otherwise identical parameter
values. The noise-induced amplification of the driver-mode,
which is characteristic for Stochastic Resonance, is clearly
visible. For this realization, the amplification appears to be
mainly due to an amplitude modulation of the strong mode (inset
in Figure 5). However, for stronger noise, it is dominated by the
recurrence of weak-mode episodes, i.e., the recurrence of “Grand
Minima” (not shown).

3. Discussion and Conclusions

We have demonstrated that a zero-dimensional dynamo
model with delay and an upper threshold for the α-effect
exhibits two fundamentally different stable oscillatory modes,
which can co-exist for suitable parameter values. A similar
observation has recently also been made by Tripathi et al.
(2021). We believe that this is a generic feature that generalizes
to more refined dynamo models of that type, which we plan to
study in the future.

An upper threshold for the α-effect (usually called “α-
quenching” in the literature and imposed ad hoc) naturally
arises from the fact that, when the magnetic field strength of
toroidal flux tubes lying beneath the bottom of the convection
zone increases above a threshold value, the tubes become
unstable, enter the convection zone from below, and buoyantly
rise toward the surface (e.g., Schüssler et al. 1994). A delay is
caused by the fact that the source layers for the α- and the
Omega-effect are located at different places within the star.

Depending on the parameter values, the weak mode could
produce few to no sunspots as is the case during Grand
Minima, whereas the strong mode, with its characteristic kink,
resembles active dynamo operation. We have also shown
qualitatively that, upon adding noise to the model, a weak
external driver can be greatly amplified through Stochastic
Resonance, either via a switching between the two different
modes or via amplitude modulation of the strong mode. Thus,
Stochastic Resonance could provide a generic explanation for
the appearance of long-period cycles in the record of solar

activity: they owe their existence to the amplification of a weak
external forcing.
The effect of stochastic fluctuations in the operation of the

solar dynamo has been considered by a number of authors (see
e.g., Hoyng 1988). In particular, Hoyng (1993) and Moss et al.
(2008) considered the effect of multiplicative noise terms in
mean-field dynamo models, and demonstrated that they can
lead to large amplitude fluctuations including Grand Minima-
like episodes. Our approach is distinctly different in that it
suggests a delay-induced bi-stability of the dynamo operation
as a possible explanation for the Grand Minima, which in
addition allows for Stochastic Resonance.
Here we have only investigated the effect of a modulation of

the dynamo number  , but any other way of modulating the
basins of attraction of the two different modes should have a
similar effect. Where to insert the modulation depends on the
kind of external driver and on the physical effect it has on the
dynamo, which is not the subject of this Letter (but see, e.g.,
Stefani et al. 2019, 2020, 2021).
Future research will have to focus on a quantitative

comparison between the observed and simulated features of
solar magnetic activity. The features that are of interest to
Stochastic Resonance include the dominant long-period cycles
in solar activity, but also the location and duration of each
Grand Minima episode (and possibly also Grand Maxima).
Other relevant features include the shape of solar cycles. Here
we have only considered the characteristic kink in their
decaying limb, but there are others, such as the Waldmeier
relations relating rise- an decay-times of cycles to their
amplitudes (Waldmeier 1939), which need to be included in
a full-fledged quantitative comparison.
Approximate Bayesian Computation, which is based on

comparing relevant observed features with their counterparts
from stochastic simulations, lends itself to this task. A
parameter sample from the Bayesian posterior could even
open the perspective of predicting the amplitudes of future
solar cycles including an estimate of the uncertainty.
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