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Abstract 
 

An independent hybrid block Simpson’s methods with a very closely accurate members of order p=q+2 
as a block was formulated. This was obtained through increasing the number k in the multi-step 
collocation (MC). Maple software was used to facilitate the derivation of the k-step continuous formulae 
for k=6 and 7. In this paper, one off-grid collocation point was added in the MC in-between the last two 
step sizes, to get the desirable schemes. These schemes were evaluated for simultaneous application on 
stiff equations. The numerical results obtained signified the efficiency of the schemes.   
 

 
Keywords: Continuous Hybrid Block Schemes (CHBS); Multi-step Collocation (MC); ODEs; Stiff equations. 
 

1 Introduction 
 
The general linear methods were introduced to provide a unifying framework to study consistency, stability 
and convergence of the traditional methods. More recently, the use of hybrid block methods which compete 
successfully with other methods like Runge-Kutta and linear multi-step methods, see [1,2,3]. These methods 
for increasingly high orders, become very difficult to derive using invasion algorithm, and another approach 
has been sought using Maple and Matlap software programme. 
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This paper is been classified into sections. In section 2.0 the MC procedure is constructed involving off-
mesh collocation points for each k and we analyze on its convergence analysis obtained in a block form. We 
obtained the order and error constants in a block form, the stability regions are also plotted. 
  

Section 3.0 is the numerical implementation of the block hybrid schemes on stiff (ODEs) and conclusion is 
given in section 4.0.    

            

Definition 1.1 Linear Multi-Step Method [1].  
 
A k-step linear multi-step (lmm) is of the form 

 

∑ ∑
= =

++ =
k

j

k

j
jnjjnj fhy
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βα
                                                                                                            (1.1)           

                  

Where 
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jα
 and jβ

 are constants and satisfy the constraints 

                        

0,0 2
0

2
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(1.1) is explicit if 
0=kβ

  and implicit if 
0≠kβ

 
 

Definition 1.2 [4]. 
  

If a numerical method is forced to be used, in a certain interval of integration, a step length, which is 
excessively small in relation to the smoothness of the exact solution in that interval, then the problem is said 
to be stiff in that interval. 
      
Unlike the linear definition of stiffness, the definition allows a single equation, not just a system of equations, 
to be stiff. It also allows a problem to be stiff in parts, a nonlinear problem may start off non-stiff and 
become stiff, or vice versa. It may even have alternating stiff and non-stiff internal. 
 

2 Construction of the Methods 
 
2.1 Derivation techniques of MC 
 
Let us consider the first order system of ODEs 
 

y
1
= f(x,y) ,        a < x < b,    y,f∈

sℜ                                                                                       (2.1.1) 
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where y satisfies a given set of s associated conditions, which are either all initial, all boundary or mixed 
conditions. The idea of the k – step MC, following [3,4], is to find a polynomial U of the form  
 

( ) xnn

t

j

m

j

jjjjnj xxxxuxfxhyxxU +

−

=

−

=
+ ≤≤+= ∑ ∑ ,)(,)()()(

1

0

1

0

ϕφ (2.1.2) 

Where t denotes the number of interpolation points 
,1,,1,0, −−−−=+ tix in   and m denote the number 

of distinct collocation points 
[ ] iknni xspothemixxx int1,,1,0,, −−−−=∈ +  are chosen from 

the step xn+i as well as one or more off – step points.  

 
The following assumptions are made; 

 
1.    Although the step size can be variable, for simplicity in our presentation of the analysis in this paper, 

we assume it is constant h

ab
Nxxh nn

−=−= + ,1
  with the steps given by 

{ },,,1,0,/ Nnnhaxx nn −−−=+=
 

2.    That (2.1.1) has a unique solution and the coefficients 
)(,)( xx jj ϕφ

 in (2.1.2) can be represented 
by polynomials of the form  
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with constant coefficients 1,1, , ++ ijij hϕφ
 to be determined using the interpolation and collocation 

conditions: 
 

( ) εiyxu inin ,++ = { }1,,1,0 −−−− t                                                                                       (2.1.5) 
 

{ }1,,1,0,))(,()(1 −−−−= mjxuxfxu jii ε                          (2.1.6) 

 

With this assumptions we obtain an MC polynomial, following [4-9], in the form 
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Where knn xxx +≤≤
 and 

{ }mtjicij +−−− ,,2,1, ε
 are constants given by the elements of the inverse 

matrix .1−= DC  The MC matrix D is a nonsingular (m+1) square matrix of the type 
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2.2 Six steps block hybrid Simpson’s method with one off-step point 
 

The parameters required for equation (2.1.8) are k=6, t=1, m= k+2; 
( )1, +nn xx

, 
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Hence the matrix (2.1.8) takes the following shape. 
 





































=

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

+++++++

7
6

6
6

5
6

4
6

3
6

2
66

7

2

11
6

2

11
5

2

11
4

2

11
3

2

11
2

2

11

2

11

7
5

6
5

5
5

4
5

3
5

2
55

7
4

6
4

5
4

4
4

3
4

2
44

7
3

6
3

5
3

4
3

3
3

2
33

7
2

6
2

5
2

4
2

3
2

2
22

7
1

6
1

5
1

4
1

3
1

2
11

765432

8765432

876543210

876543210

876543210

876543210

876543210

876543210

876543210

876543210

1

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnnn

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxx

xxxxxxxx

D

            (2.2.1)   
 
Using the maple software environment to evaluate (2.2.1) at the grid points 
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We obtain the seven discrete schemes, namely, 
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2.3 Seven steps block hybrid Simpson’s method with one off-step point 
   

The parameters required for equation (2.1.8) are k=7, t=1, m= k+2;
( )1, +nn xx
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Hence the matrix (2.1.8) takes the following shape. 
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Using the maple software environment to evaluate (2.2.3) at the grid points 
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We obtain the eight discrete schemes, namely, 
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2.4 The order and error constants of the block hybrid methods 
 
The hybrid block methods which are obtained in a block form with the help of maple software have the 
following order and error constants for each case. 
 
k=6 BHSM with one off-step point 
 
The method k=6 is of order 8 as a block and has error constants   
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The method k=7 is of order 9 as a block and has error constants   
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2.5 Stability regions of the block hybrid Simpson’s methods 
 
To compute and plot the absolute stability regions of the block hybrid Simpson’s methods, the methods are 
reformulated as general linear methods expressed as; 
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and the elements of the matrices A,B,U and V are obtained from the interpolation and collocation and 
collocation points. 
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The elements of the matrices A, B, U and V are substituted into the stability matrix 
 

              VBUBBAAAwhereBzAIzABzM ====−+= −
21211

1
122 ,,,)()(  

 
and the stability function 
 

               ))(det(),( zMIz −= ηηρ  
 
Computing the stability function with Maple yields the stability polynomial of the method which is plotted 
in Matlab to produce the required absolute stability region of the method. 
 
2.5.1 Absolute stability region of the block hybrid method K=6 
 
The block hybrid methods (2.2.2) with one off-grid point are arranged as shown below; 
 
The coefficients of these methods expressed in tabular form bellow gives the coefficients of the new method. 
  
The values of A, B, U and V into the stability matrix and the stability function are used in the Maple 
software to yields the stability polynomial of the hybrid block method. 
 
Using a Matlab program, we obtained the stability region of the block hybrid Simpson’s method for K= 6 as 
shown in Fig. 1.  
 

 
 

Fig. 1. Stability region of the block hybrid Simpson’s method K=6 
 

Following the same procedure for k=7, the elements of the matrices A,B,U and V are substituted and 
computing the stability function with Maple software yield, the stability polynomial of the method which is 
then plotted in MATLAB environment to produce the required absolute stability region of the methods, as 
shown by the Fig. 2. 
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Fig. 2. Stability region of the block hybrid Simpson’s method K=7 
 

3 Numerical Implementation 
 
To study the efficiency of the block hybrid method for k=6 and 7, we present some numerical examples 
widely used by several authors such as [2,5]. 
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Table 1. Absolute errors for experiment 1 
 
Y A-stable hybrid block Simpson’s 

K=6 
A-stable hybrid block Simpson’s 
K=7 

0.1 1.36 x 10-1 1.21 x 10-1 
0.2 4.24 x 10-2 3.30 x 10-2 
0.3 2.27 x 10-2 1.54 x 10-2 
0.4 1.82 x 10-2 1.20 x 10-2 
0.5 1.52 x 10-2 1.20 x 10-2 
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Y A-stable hybrid block Simpson’s 
K=6 

A-stable hybrid block Simpson’s 
K=7 

0.6 9.09 x 10-2 1.20 x 10-2 
0.7 1.24 x 10-2 7.69 x 10-2 
0.8 3.86 x 10-3 9.30 x 10-3 
0.9 2.07 x 10-3 2.54 x 10-3 
1.0 1.65 x 10-3 1.18 x 10-3 

 
Table 2. Absolute errors for experiment 2 

 
Y A-stable hybrid block Simpson’s 

K=6 
A-stable hybrid block Simpson’s 

K=7 

1y  2y  3y
 1y  2y  3y

 
0.1 5.09 x 10-3 5.09 x 10-3 1.59 x 10-1 2.27 x 10-3 2.79 x 10-3 1.44 x 10-1 
0.2 3.45 x 10-4 3.45 x 10-4 4.07 x 10-2 5.56 x 10-4 5.56 x 10-4 3.23 x 10-2 
0.3 1.81 x 10-3 1.81 x 10-3 1.81 x 10-2 9.46 x 10-4 9.46 x 10-4 1.33 x 10-2 
0.4 1.31 x 10-3 1.31 x 10-3 1.27 x 10-2 9.08 x 10-4 9.08 x 10-4 7.69 x 10-3 
0.5 1.20 x 10-3 1.20 x 10-3 1.15 x 10-2 1.02 x 10-3 1.02 x 10-3 6.91 x 10-3 
0.6 7.92 x 10-3 7.92 x 10-3 1.31 x 10-2 1.10 x 10-3 1.10 x 10-3 7.54 x 10-3 
0.7 1.16 x 10-3 1.16 x 10-3 3.05 x 10-4 6.60 x 10-3 6.60 x 10-3 9.84 x 10-3 
0.8 2.91 x 10-4 2.91 x 10-4 6.12 x 10-5 8.44 x 10-4 8.38 x 10-4 1.23 x 10-4 
0.9 1.29 x 10-4 1.29 x 10-4 5.91 x 10-5 1.83 x 10-4 1.83 x 10-4 6.31 x 10-5 
1.0 9.07 x 10-5 9.07 x 10-5 5.56 x 10-5 7.01 x 10-5 7.01 x 10-5 4.27 x 10-5 

 

4 Conclusion  
 
It is evident from the above tables that our proposed methods are indeed accurate, and can handle stiff 

equations. Also in terms of stability analysis, the methods, k=6 is αA
-stable and k=7 is A-stable and the 

schemes have also been shown to be of good order.  
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