Journal of Advances in Mathematics and Computer Science

23(1): 1-29, 2017; Article no.JAMCS.34540

Previously known as British Journal of Mathematics & Computer Science
ISSN: 2231-0851

E-Bayesian and Hierarchical Bayesian Estimations
Based on Dual Generalized Order Statistics
from the Inverse Weibull Model

Hesham M. Reyadl*, Adil M. Younis' and Soha A. Othman®

! College of Business and Economics, Qassim University, Kingdom of Saudi Arabia.
*Institute of Statistical Studies and Research, Cairo University, Egypt.

Authors’ contributions

This work was carried out in collaboration among all authors. Author HMR introduced the idea in a
methodically structure, did the data analysis and drafied the manuscript. Author AMY assisted in building
the study design and also did the final proofreading. Author SOA managed the analyses of the study and
literature searches and also proofiread the draft. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2017/34540

Editor(s):

(1) Morteza Seddighin, Indiana University East Richmond, USA.

Reviewers:

(1) Diana Bilkova, University of Economics, Czech Republic.

(2) Rashmi Awad, Devi Ahilya University, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/19738

Received: 31" May 2017

Accepted: 22" June 2017
| Original Research Article Published: 28" June 2017

Abstract

This paper is devoted to compare the E-Bayesian and hierarchical Bayesian estimations of the scale
parameter corresponding to the inverse Weibull distribution based on dual generalized order statistics.
The E-Bayesian and hierarchical Bayesian estimates are obtained under balanced squared error loss
function (BSELF), precautionary loss function (PLF), entropy loss function (ELF) and Degroot loss
function (DLF). The properties of the E-Bayesian and hierarchical Bayesian estimates are investigated.
Comparisons among all estimates are performed in terms of absolute bias (ABias) and mean square error
(MSE) via Monte Carlo simulation. Numerical computations showed that E-Bayesian estimates are more
efficient than the hierarchical Bayesian estimates.

Keywords: E-Bayesian estimates, inverse Weibull distribution, hierarchical Bayesian estimates, loss
functions, Monte Carlo simulation.
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1 Introduction

The inverse Weibull distribution has great importance in many applications including the dynamic
components of diesel engines and several data sets such as the times to breakdown of an insulating fluid
subject to the action of a constant tension (see Nelson [1]). Several authors have studied the inverse Weibull
distribution; for examples, Calabria and Pulcini [2] have obtained two sample Bayesian prediction for
inverse Weibull model in complete samples. Kundua and Howlader [3] have constructed one and two
sample predictive posteriors of the future order statistics from inverse Weibull distribution based on type-ii
censoring. Abd Ellah [4] has obtained the non-Bayesian and Bayesian estimates for parameters and
reliability function for inverse Weibull distribution based on generalized order statistics. Singh et al. [5] have
studied the classical and Bayesian approaches in estimating the unkown parameters of inverse Weibull
distribution under type-i and type-ii censored data. Singh et al. [6] have discussed the Bayesian technique for
prediction of the future samples from inverse Weibull distribution based on type-ii hybrid censoring.
Yahgmaei et al. [7] have used the maximum likelihood and Bayesian schemes to estimate scale parameter of
the inverse Weibull distribution. The probability density function (pdf) and cumulative distribution function
(cdf) of the inverse Weibull distribution (IWD) are given respectively as

Fx)=A0x e, x>0, 1,0>0, (1)

F(x)=e ® ", x>0, 1,00, )
where @ and A are the scale and shape parameters respectively.

Order statistics are widely used in statistical inferences and modelling purposes. Kamps [8] introduced the
concept of the generalized order statistics (GOS) as a unified scheme to many models of ordered random
variables such as ordinary order statistics, upper record values and sequential order statistics. Burkschat et al.
[9] proposed the dual generalized order statistics (DGOS) as a dual model of GOS and a unification of
various models of decreasingly ordered random variables such as reversed order statistics, lower record
values and lower pfeifer record. Given a random sample drawn from an absolutely continuous distribution
function (cdf) F with corresponding probability density function (pdf) / , the joint density function of the
first n DGOS can be written as

n-1
JAGmmO X (e x ) =Cy [H(F(x,»))’"f (x»}(F(xn»“f (x,) 3)

i=1

On the cone F71(0)<xn <..Sx <F Y1) with parameters n e N ,n =2,k >0,m >—1and C,,= H;/l-

i=1
such that y, =k +(n—i)(m +1)>0for all i € {1,...,n} . The lower record values of size n can be derived
from the DGOS procedure as a special case by taking m =—land k£ =1.

The E-Bayesian is a new approach of estimation was first proposed by Han [10]. Many authors studied the
E-Bayesian technique such as, Han [11] estimated the reliability parameter of the exponential model by
using the E-Bayesian and hierarchical Bayesian methods under type-i censored samples and by considering
the quadratic loss function.Yin and Liu [12] used the E-Bayesian and hierarchical Bayesian estimation
schemes in estimating the reliability parameter of geometric distribution under scaled squared loss function
in complete samples. Wei et al. [13] obtained the E-Bayesian and minimum risk equivariant estimates for the
Burr-XII distribution based on entropy loss function in complete samples. Jaheen and Okasha [14] estimated
the parameter and reliability function of Burr-XII distribution by using the E-Bayesian and Bayesian
methods under squared error and LINEX loss functions based on type-ii censored data. Cai et al. [15]
constructed the E-Bayesian approach for forecasting of security investment. Okasha [16] derived the
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maximum likelihood, Bayesian and E-Bayesian estimators for the parameter, reliability and hazard functions
associated to the Weibull distribution under type-ii censoring. Azimi et al. [17] obtained the E-Bayesian and
Bayesian estimates for parameter and reliability function of the generalized half Logistic distribution under
progressively type-ii censored data and by using symmetric and asymmetric loss functions. Javadkani et al.
[18] used the Bayesian, empirical Bayesian and E-Bayesian methods in estimating shape parameter and
reliability function of the two parameter bathtub-shaped lifetime distribution based on progressively first-
failure-censoring and by using the minimum expected and LINEX loss functions. Liu et al. [19] derived the
E-Bayesian and hierarchical Bayesian estimates for the Rayleigh distribution under g-symmetric entropy
loss function in complete samples. Reyad and Othman [20] obtained the Bayesian and E-Bayesian estimates
for shape parameter of the Gumbell type-ii model based on type-ii censoring and by considering squared
error, LINEX, Degroot, quadratic and minimum expected loss functions. Reyad and Othman [21] derived
the E-Bayesian and Bayesianestimators for the Kumaraswamy distribution under type-ii censored data and
by using different symmetric and asymmetric loss functions. Reyad et al. [22] compared the E-Bayesian,
hierarchical Bayesian, Bayesian and empirical Bayesian estimates of shape parameter and hazard function
cooresponding to the Gompertz model under type-ii censoring and by using squared error, quadratic, entropy
and LINEX loss functions. Reyad et al. [23] obtained the QE-Bayesian, quasi-bayesian, quasi-hierarchical
Bayesian and quasi-empirical Bayesian estimates for the scale parameter of the Erlang distribution under
different loss functions in complete samples. Reyad et al. [24] compared the QE-Bayesian and E-Bayesian
estimation methods in estimating the scale paramter of the Frechet distribution based on squared error,
entropy, weighted balanced and minimum expected loss functions in complete samples.

The paper aims to compare the E-Bayesian and hierarchical Bayesian approaches in estimating scale
parameter associated to the inverse Weibullmodel based on DGOS. The resulting estimates are derived
under different loss functions and specialized to lower record values. The properties of the E-Bayesian
estimates are studied and the relations among E-Bayesian and hierarchical Bayesian estimates are
investigated.

The remainder of this study is organized as follow. In Section 2, the various loss functions will be used in
this study are viewed and posterior distribution is derived. The E-Bayesian estimates for ¢ are derived
under BSELF, PLF, ELF and DLF in Section 3. In Section 4, the hierarchical Bayesian estimates for 6 are
obtained under BSELF, PLF, ELF and DLF. In Section 5, the properties of the E-Bayesian and hierarchical
Bayesian estimates are investigated. In Section 6, numerical computations are used to assess the
performance of the resulting estimates. Finally, some concluding remarks are presented in Section 7.

2 The Loss Functions and Posterior Distribution

In this section, we referred to the various loss functions concerned in this paper and derived the posterior
distribution associated to IWD.

2.1 The loss functions
We will use the following loss functions:
2.1.1 The balanced squared error loss function (BSELF)
Ahmadi et al. [25] defined the balanced sequred error loss function (BSELF)to be:
L,(0,0)=w (0-0'Y +(1-w)H-6). 4)

where w is a suitable positive weight function, @ is an estimator of @, @ is a prior estimator of & obtained

usually by either maximum likelihood or least squares methods and (0-06) is the squared error loss

function. The Bayes estimator of @ relative to the BSELF denoted by /;’BB can be obtained as



Reyad et al.; JAMCS, 23(1): 1-29, 2017, Article no.JAMCS.34540

éRR

=w 6 +(1-w)E, (0]x) . 5)
provided that the expectation corresponding to posterior distribution; £, (€|)£ ) exisits and finite.

2.1.2 The precautionary loss function (PLF)

Nostrom [26] defined the precautionary loss function (PLF) as follows:

s (0-0)
L,(0,0)= Q . (6)
The Bayes estimator of & based on PLF denoted by éB » can be obtained as
L
Oy = |:Eh (& |£):|2 . (7

provided that the expectation E, (6" |)£ ) exisits and finite.

2.1.3 The entropy loss function (ELF)

Day et al. [27] have discussed the entropy loss function (ELF) of the form:

~ (6 0
L.(0.6) oc[gj—ln (5]—1. (8)

where @ is an estimator of ¢. The Bayes estimator of ¢ relative to ELF denoted by éB . can be obtained as

~ . -1
0, =[E (0" )] . ©)
provided that the expectation £, (6" |)£ ) exisits and finite.
2.1.4 The degroot loss function (DLF)
The Degroot loss function (DLF) is introduced by Degroot [28] to be:
Lw.6= 72| (10)
6
The Bayes estimator relative to DLF denoted by éBD can be obtained as
. E, (0
5 @) (11
E,(0x)

provided that the expectations E,, (6° |)£ ), E, 0 |£ ) are exisit and finite.



Reyad et al.; JAMCS, 23(1): 1-29, 2017, Article no.JAMCS.34540

2.2 The posterior distribution

Assume that X (I,n,m,k),...X (n,n,m,k)be n DGOS taken from IWD, the likelihood function can be
obtained by subsituting from Eqs. (1) and (2) in Eq. (3) to be

n n—1
L(/1,0|)£ Yoc 419" [Hxiﬂ“l]exp{(—ﬁ)[(m +1)zx;ﬂ~ +kx AH . (12)
i=l i=l
Assuming A is known, then the likelihood function in Eq. (12) become
L(9|£)oc9”e*9”. (13)

Where
n-1
Ho=(m+1)Y x7 ke, (14)
i=l1

We can use the exponential distribution as a conjugate prior distribution of 8 with rate parameter a and its
pdf given by

g(Olay=ae™, 0>0,a>0 (15)

From the Bayes theorem, the posterior distribution of @ can be obtained by combining Eqgs. (13) and (15) to
be

L(O)g0l)  (H +ay™ g -0 0

hOk) =— T(n+1)

0,a>0. (16)
jo L(Ox)g(8la)do

That mean, the posterior distribution of @ obeys I'(H +a,n +1).
3 The E-Bayesian estimation

In this section, we have obtained the E-Bayesian estimates for scale parameter of IWD under BSEL, PLF,
ELF and DLF.

Based on Han [29], the hyperparameter @ must be selected to guarantee that g(¢9|a) given in Eq. (15) is a

decreasing function of @. The derivative of g(8 |a) with respect to 6 is

dg(6
g;gla) = (—az)exp[—a 0] . (17)
. dg (6]a)
Note that ¢ >0 and @ >0 leads to for any value of 0<a <o, imply to —9< 0, and therefore

g(¢9|a) is a decreasing function of . Consequently, it is convention to choose the hyperparameter ¢ under
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the restriction 0 <a <c, where ¢ is a given upper bound (¢ is a positive constant). Then, we can use the
following hyperprior distributions of a introduced by Han [30].

m(a)=2(ccza), 0<a<c, (18)

71'2(a):cl O<a<c. (19)
And

7z3(a)=2—(21, O<a<c. (20)

c
3.1 The E-Bayesian estimation under BSELF

Theorem 1. Assuming BSELF in Eq. (4), the posterior distribution in Eq. (16) and the hyperprior
distributions of a in Egs. (18), (19) and (20), we have two conclusions:

(i) The Bayesian estimate éBB of & based on BSELF is

O :ﬂ+(1—w)["“). @)
H H +a
(ii) The E-Bayesian estimates éml , éﬂm and éﬂm of @ based on 7,(a), 7,(a) and 7,(a) respectively

relative to BSELF are the following:

5 _wn {w} (HE}H(HLJ_I (22)
EBB1 H c ¢ H ’
g _wn {M}n[u c J (23)
EBB 2 H c H
And
5 _wn {w} 1_(£jln(1+ij . (24)
EBB 3 H c c H

Proof. (1) The natural logarithm of the likelihood function in Eq. (13) is given by
(@) xcnlnd—-6H . (25)

Differentiating Eq. (25) with respect to & and equating the result to zero, then the likelihood equation for
is given by

MO _n__p . (26)
o0 0
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The maximum likelihood estimator & of @ can be obtained by solving Eq. (26) to be

0 = 27

We can derive E,, («9|)£) by using Eq. (16) to be

o n+l
E,,(6|£)=j o| UL gn oty |4 1 (28)
0 T'(n+1) H +a

Consequentely, the Bayesian estimate éBB can be obtained by using Eqs. (27) and (28) in Eq. (5) to be

0, =W—”+(1—w)( ntl j
H H +a

(ii) The E-Bayesian estimate ém] based on 7,(a) can be obtained by using Egs. (18) and (21) to be

éEBm:J“ 1lﬂ"’(l_w) ntl 2(C—(1)da:1/ﬂ+ w 1+£ In 1+i —-1]-
ol H H +a c? H c c H

o,

EBB3

Similarly, the E-Bayesian estimates 0 based on 7,(a), 7,(a) can be obtained by using Egs. (19),

EBB2

(21) and Egs. (20), (21) respectively to be

éEBBZ :J.l M‘F(I—W)( ntl j ldLZZM‘F|:7(1_W )(n+1)j}ln(l+ij
o| H H+a)|c H c H

And
o

o= [ 0G5 e S (222 (o)

3.2 The E-Bayesian estimation under PLF

Theorem 2. Assuming PLF in Eq. (6), the posterior distribution in Eq. (16) and the hyperprior distributions
of a in Egs. (18), (19) and (20), we have two conclusion:

(i) The Bayesian estimate éBP of & based on PLF is

P @ +1)(n+2) (29)

w H +a

(i) The E-Bayesian estimates éEBPl , éEBPZ and éEBm of @ based on 7(a), 7,(a) and 7,(a)
respectively relative to PLF are the following:
A 2 1 2
b, :MKHE}H(HLJ,I} (30)
c c H
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EBP2
C

P ,7\/(“1)(””)111[“%). 31)

And
6 - W{l SEANT ﬂ , )
c c H

Proof. (i) By using Eq. (16),we get

2\ [P 2 H +a)"" —O(H +a) _(n+h(n+2)
E, (6 "i)‘jo 0 [r(nﬂ) 0" e }da_(H TR (33)

Then, the Bayesian estimate éBP can be obtained by using Eq. (33) in Eq. (7) to be

o _ [ntDn+2) Jn+1)(n +2)
”P (H +a)? H +a
(ii) The E-Bayesian estimate 6,,,, based on 7,(a) can be obtained by using Egs. (18) and (29) to be

EBB1

c c c

b, _J‘{ N+ +2)}2(c;a)da_ 2(n +1)(n +2) HHijln[Hij—l]
0 H +a H

9EBBS

Similarly, the E-Bayesian estimates 6 based on 7,(a), 7,(a) can be obtained by using Egs. (19),

EBB2°

(29) and Egs. (20), (29) respectively to be

é 7'[< J@m+1D)(n +2) lda71l(n +1)(n +2) ln(l+c—)
EBP2 0 H+a c = c q
And
5 ‘| Jr+D(n+2) |2a 2,J(n +1)(n +2) H c
gﬁfrm :J‘n ﬁ ?da :% 1- 7 In l+§ .

3.3 The E-Bayesian estimation under ELF

Theorem 3. Assuming ELF in Eq. (8), the posterior distribution in Eq. (16) and the hyperprior distributions
of a in Egs. (18), (19) and (20), we have two conclusion:

(i) The Bayesian estimate 67“ of @ based on ELF is

0, =—"—. (34)

and 0

émz ) 5z, Of @ based on 7,(a), 7,(a)and x,(a) respectively

(i1) The E-Bayesian estimates 0

EBE1°

relative to PLF are the following:
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6,,, :%KHHJIH(HCJ_I} (35)
c c H

b :—ln[l+gj. (36)

And

O = 2"{1_(Hjm[1+0ﬂ . (37)
c c H

Proof. (i) By usingEq. (16), we get

o n+l
E, (0" |)£):J. o' MQ" e 0t +a) d9:H+a ) (38)
0 I'(n+1) n

Then, the Bayesian estimate éBE can be obtained by using Eq. (38) in Eq. (9) to be

0 - H +a 71_ n
tE n H +a

(i1) The E-Bayesian estimate éEBEI based on 7,(a) can be obtained by using Egs. (18) and (34) to be

6

:.[{ " }2(““)@:2—” (l+ijln[l+ij71-
FoE o| H +a c? c c H

Similarly, the E-Bayesian estimates 6,,,., 6,,,, based on 7,(a), ,(a)can be obtained by using Egs. (19),

(29) and Egs. (20), (29) respectively to be

A ¢ n 1 n c
ey = —da=—In|1+—|.
Oone: v[0|:H+a:|c . c n[ +Hj

S ¢ n 2a 2n H c
b,,., _.[0 { n +QL—Zda _C{l—hjln(uHﬂ.

3.4 The E-Bayesian estimation under DLF

And

Theorem 4. Assuming DLF in Eq. (10), the posterior distribution in Eq. (16) and the hyperprior distributions
of a in Egs. (18), (19) and (20), we have two conclusion:

(i) The Bayesian estimate éBD of 0 based on PLF is

A n+2
_ ) 39
® H+a (39)
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(ii) The E-Bayesian estimates 6, , 6, and 6, . of @ based on x,(a) , z,(a) and z,(a)
respectively relative to DLF are the following:

g, - 2n+2) KHH}n(HC}l} (40)
c c H
6y = 172 1n(1+i). @1)
c H
And
Gy = 242 {1-[H]1n[1+6ﬂ | )
c c H

Proof. (i) The Bayesian estimate éBD can be obtained by using Egs. (28) and (33) in Eq. (11) to be

PG C +2)/(H +a)>  n+2
7 (m+)/(H+a)  H+a

(i1) The E-Bayesian estimate éEB 4, based on 7,(a) can be obtained by using Eqgs. (18) and (42) to be

él;‘BDl :J.l|: n+2j|2(c;a)da_2(n+2)|:(1+Hjln(l+Cj—lj|.
o| H +a c c c H

Similarly, the E-Bayesian estimates 6,,,., 6,,,, based on 7,(a), 7,(a) can be obtained by using Egs. (19),
(29) and Egs. (20), (29) respectively to be

A o n+2 |1 (n+2) c
= —da = In|1+—
Ouno »[0|:H+a:|c . c n[ +Hj

And

éEBD} :J‘l'|: n+2 :|2ad(1—2(n+2)|:1—(Hjln(l+cj}‘
o| H+a |c? c c H

4 The Hierarchical Bayesian Estimation

In this section, the hierarchical Bayesian estimates for scale parameter of IWD based on BSEL, PLF, ELF
and DLF are derived.

Based to Lindley and Smith [31], if @ is hyperparameter in &, the prior density function of & is g(¢9|a)

given in Eq. (15) and the hyperprior distributions of @ are given in Eqgs. (18), (19) and (20), then the
corresponding hierarchical prior distributions of & are given as the following:

4 2 rc —a
my(0) = .[0 g(l9|a) m(aya = c_2-|.0 a(c—a)e %da, (43)

10
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c 1pe
75(0) = Io g (H|a) 7y(aYa = ;.[0 ae™%da . (44)
And

c 2 (¢ 5 _
7(0) = Io g(0|a) 7ty (a)da = c_z-[o a’e ™ da . (45)

According to Bayesian theorem, the hierarchical posterior distributions of @ can be derived by combining
Eqgs. (13), (43), (44) and (45) to be

L6 2} ca(c —a)0" o OH +a) g,
A E— o ! : , (46)
J.O L(6|)C_)7T4(6)d6 r(}’l +1)J.0 a(c—a)(]—] +a)’(”+1)da
L(0]x)75(6 “ag" ey
AURE— IO ! : . @7)
IO L(6))75(0)d0  T(n +1)jo o +a)"Vda
And
L(0 0 € 220" -0+ g,
Ol = — Oome .

J'O L(6)x)74(6)d 0 T +1).[(:a2(H +a)y "D dq

4.1 The hierarchical Bayesian estimation under BSELF

Theorem 5. Assuming BSELF in Eq. (4), the hierarchical posterior distributions in Egs. (46), (47) and (48),

then the hierarchical Bayes estimates 6 6 and 6,

HBB1 HBB 2 HBB3

of @ are the following:

i e, (1w )(n +1).[0 alc —a)(H +a)y "*Vda | )

HBB1 — c
H I a(c —a)(H +a) " Vda
0

) (A=w)n +D)[ a(H +a) " da
91-1332 = M + ¢ J.O : (50)
H I a(H +a)_(”+1)da
0

And

s _wn 0¥ Y+ @ (H +a) "V da | 1)

HBB3 — ¢
i J. a*(H +a) " Vda
0

Proof. We can derive E, (9|£ ),(i =1,2,3) by using Eqgs. (46), (47) and (48) to be

11
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J.:GUOC a(c -a)9" ee(H*”)da}d 0 1 ac-a)t +a) " da
ERUSE —

. g : (52)
T(n+1) j a(c —a)(H +a) "V da J' a(c —a)(H +a) " Vda
0 0
.|.0 9“;) af" e M +‘”da}d& (n+ l)j; a(H +a) "*Pda
Ey, (6} = : =T (33)
I'(n +1)J. a(H +a) " Vda I a(H +a)y " Vda
0 0
And
J.wﬁ[razﬁ”e_'gwm)da}dé’ “’*DJC““H a)y g
0 0
E, (0)x)= S (54)
f3 c 2 1 & 2 1
I(n +1).[ a*(H +a)y "Vda .|' @*(H +a) Vg
0 0
Therefore, the hierarchical Bayesian estimates QAHBM , émm and émm can be obtained by using Egs. (27),
(52), (53) and (54) in Eq. (5) to be

. w A-w)(n +1)j:a(c —a)(H +a) "V da

HBB1 —

H

s

I()C a(c —a)(H +a) " "Vda

HBB2 —

o, (W) +1)J‘0 a(H +a)" " da

H

J‘C a(H +a) " Vda
0

And

>

_ ) —~(n+2)
G w)(n+l)j0a (H +a) "Ddq

H

HBB3

J.OC a*(H +a)""Vda
4.2 The hierarchical Bayesian estimation under PLF

Theorem 6. Assuming PLF in Eq. (6), the hierarchical posterior distributions in Egs. (46), (47) and (48),
then the hierarchical Bayesian estimates éHBP‘ , éHBPZ and éﬁm of @ are the following:

(n+1)(n +2)J:a(c —a)(H +a) " da

HBP1 —

>

: (55)
I; alc —a)H +a) " Vda

12
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(n+1)(n + 2)j:a(H +a) "D g

AHBI’Z = " (56)
jo a(H +a) " Vg
And
) —(n+3)
. (n+1)(n +2)J'0 a*(H +a) " Vda 5
.[o a®(H +a)""*Vdq
Proof. We can derive E, (6* |)£),(i =1,2,3) by using Eqgs. (46), (47) and (48) to be
_fo 0° [ jo a(c —a)0" e ”)da}d O+ +2) “alc —a)(H +a) "Vda
E/‘.l (92 |£) = ¢ = c : . (38)
I'(n+1) J.o a(c —a)H +a) " Vda J.o a(c —a)H +a) " Vda
IO o’ “0 ag" eg(H“’)da}d 0 (n+1)n+ zora(ﬂ +a) "I dg
E,, (6? |)L) = - = - 0 (59)
T(n +1)j a(H +ay "Vda j a(H +a) "Vda
0 0
And
L 0 [ L a’e" e"g(H”)da}d 0 (n+1)(n+2) j “R(H +a)y "y
Ep, (7)) = = : (60)

I'(n+1) raz(H +a) "Vgq J'Caz (H +a)""*Vda
0 0

HHBPZ and HHBPS

Therefore, the hierarchical Bayesian estimates 0 can be obtained by using Egs. (58),

(59) and (60) in Eq. (7) to be

(n+1)(n + 2)J'0Ca(c —a)(H +a) " Dda

ra(c —a)(H +a) " Vdq
0

(n+1)(n +2)_[:a(H +a)y "I dq

HBP2 —

J.U a(H +a) " Vdq
0

And

(n +1)(n + 2)'["a2(H +a)y " Idq
— 0

HBP3 —

j( a’(H +a) " Vdq
0

13
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4.3 The hierarchical Bayesian estimation under ELF

Theorem 7. Assuming ELF in Eq. (8), the hierarchical posterior distributions in Egs. (46), (47) and (48),
0 and 6

HBE 2 HBE 3

then the hierarchical Bayesian estimates 6 of & are the following:

HBE1 >

¢ 1
nj a(c —a)H +a)""Vda
0

Oy =—2— , (61)
J. a(c —a)(H +a)"da
0
J’” —(n+1)
A n 0a(H +a) da 62)
) Ica(H +a)"da
0
And
J‘C 2 —(n+1)
n Oa (H +a) da (63)

HBE3 —

JC a*(H +a)"da
0
Proof. We can derive E CE |)£),(i =1,2,3) by using (46), (47) and (48) to be
1| [ —0(H +a) ¢ —n
Io 0 [J‘O a(c-a)0" e da}d& J.o a(c —a)(H +a)"da

E;(07'x)= - =— , (64)
Tn+ 1)]0 a(c —a)(H +a) " Vda njo a(c —a)(H +a) "Vdq

© 1| (€ on  —6(H+a) ¢ .
joa ana e da}d& Io“(H”) da

E; (07 0)= = : (65)
¢ —(n+1) ¢ —(n+1)
T(n +1)j a(H +a) " Vda nj a(H +a)y " Vda
0 0
P o1 (€ 290 —6(H+a) c n
.[0 0 an 0" e da}dﬁ J‘Oaz(H+a) da

E, (07" |x)= = . (66)
.f} — c C
I'(n +1)J. a*(H +a)""Vda nJ. a*(H +a) " "Vda
0 0

And

and 0

HHBE 2 HBE 3

Consequentely, the hierarchical Bayesian estimates 0 can be obtained by using Egs.

(64)7 (65) and (66) 1nEq (9) to be HBE1 >

¢ —(n+1)
n| alc—-a)H +a) da
HBE1 = g >

J.(:a(c —a)(H +a) "da

n.ra(H +a) "Dgq
__Jo

HBE2 —

IC a(H +a)"da
0
And

14
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. nJ.CaZ(H +a) " Vg
Oy = —2

HBE 3

)
I a”(H +a)"da
0

4.4 The hierarchical Bayesian estimation under DLF

Theorem 8. Assuming DLF in Eq. (10), the hierarchical posterior distributions in Egs. (46), (47) and (48),

then the hierarchical Bayesian estimates 0 7 and 0

o1 > Orusna s, Of O are the following:

(n +2)I:a(c —a)(H +a)y "Vda

HBD1 — (67)
I ac —a)(H +a) " "*Pda
0
n+2)[ aH +a)"Pda
HBD 2 = jo (68)
.[0 a(H +a)" " Pda
And
n+)[ @ +a)y " Vda
_ jo (69)

HBD3 —

J. a*(H +a)™"*Pda
0

Proof. The hierarchical Bayesian estimates 6,,,, can be obtained by using Eqgs. (52) and (58) in Eq. (11) to

HBD1
be

(000 + ) ate —axit +“)_(n+3)d“/ [ atc-ar +ayVda

HBD1 —

(n +1>j:a(c ~a)(H +a) "*Pda / j;‘a(c )H +a)y " Vda

(n+ Z)J.(:a(c —a)(H +a) " Vda

I: a(c —a)(H +a) " Pda

and 0

Similarly, the hierarchical Bayesian estimates 6 ) 53

s can be obtained by using Egs. (53), (59) and
(54), (60) in Eq. (11) to be

¢ 3 ¢ 1 ¢ 3
(n+1)(n +2)J' a(H +a) " )da/j a(H +a) " Vda  (n +2)J' a(H +a)" " Vda
0 0 _ 0 .

HBD2

(n +l)ra(H +a)“"+2>da/ra(H +a) Vg J.Ca(H +a) "D gq
0 0 0
And
(n+D(n +2)Ica2(H +a)_("+3)da/ra2(H +a) " Vg (n +2)ra2(H +a) "*da
0 0 _ 0 .

HBD3 —

(n +1)ra2(H +a)_(”+2)da/J.Ca2(H +a)_(”+1)da .raz(H +a)_("+2)da
0 0 0
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S Properties of the E-Bayesian and Hierarchical Bayesian Estimates

In this section, we shall discussed the properties of E-Bayesian estimates and the relations among the E-

Bayesian and hierarchical Bayesian estimates.

5.1 The relations between the E-Bayesian estimates

In this subsection, we will construct the relations between the E-Bayesian and the hierarchical Bayesian

estimates.

5.1.1 Relations among 6, (i =1,2,3)

Lemma 1. It follows from Egs. (21), (22) and (23) that

(1) 6EBB3 < QEBBZ < QEBBI :

(ll) hm EBBI - ll[lm HEBB7 - 111’1’1 05333
Proof. See Appendix (1).
5.1.2 Relations among HEBP (i =123)

Lemma 2. It follows from Egs. (30), (31) and (32) that

(1) €EBP3 6EBP2 < QEBPI °

(ii) hm QEBH = hm6’EB,,2 = hméEBm .

H—» H—»

Proof. See Appendix (1).

5.1.3 Relations among 6,,,. (i =1,2,3)

Lemma 3. It follows from Egs. (35), (36) and (37) that
(1) HFEF’r < HFRFZ < HFRFI
(ll) ll[ll’n 01:1351 - 11[11’1’1 051352 - ll[lm 0

EBE3 *
Proof. See Appendix (1).
5.1.4 Relations among ém‘. (i=123)

Lemma 4. It follows from Egs. (40), (41) and (42) that

(1) 6EBD3 6EBD2 < éEBD] °

(11) hm eEBDl [l_[ éEBD 2 hm 958[)3
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Proof. See Appendix (1).
5.2 The relations between theE-Bayesian and hierarchical Bayesian estimates

In this subsection, we will construct the relations between the E-Bayesian and the hierarchical Bayesian
estimates .

5.2.1 Relations among 0., .0 (i =12,3)

EBBi >~ HBBi

Lemma 5. It follows from Egs. (21), (22), (23), (49), (50) and (51) that

limd,,,, =limd,, (i =1,2,3).

e _EBBi

Proof. See Appendix (2).

5.2.2 Relations among 0.,.0 (i=123)

EBPi >~ HBPi

Lemma 6. It follows from Egs. (30), (31), (32), (55), (56) and (57) that
11}2;1 Our = 11}2;1 Oor (i =1,2,3)..

Proof. See Appendix (2).

5.2.3 Relations among 0,..0=1273)

EBEi >~ HBEi

Lemma 7. It follows from Egs. (35), (36), (37), (61), (62) and (63) that

limf,,, =1imé,,, (i =1,2.3).

o EBEi

Proof. See Appendix (2).

5.2.4 Relations among 6. (=123

EBDi ® ~ HBDi

Lemma 8. It follows from Egs. (40), (41), (42), (67), (67) and (69) that

IIIIEI{}: gEBDI

=111imé (i =1,23).

. HBDi

Proof. See Appendix (2).
6 Numerical Computations

The lower record values can be derived from the DGOS as a special case by taking m =—1and k =1.
Consequentely, the resulting estimates obtained in the ealiar sections can be specialized to lower records.
The E-Bayesian and hierarical Bayesian estimates of @ are computed and compared based on a Monte Carlo
simulation study described in the following steps:

Step (1):Set the default values (true values) of 1, ¢ and w which are 3, 6 and 0.4 respectively. We used
different sample sizes to investigate their effects on the resulting estimates.
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Step (2):Based on these cases, we generate a from the uniform hyperprior distributions (0,c) given in

Eqgs. (18), (19) and (20). For given values of a , we generate 6 from the expoential distribution
given in Eq. (15).

Step (3):Based on known values of 1 samples are generated from the IWD distribution given in Egs. (1)
and (2).

Step (4): Computing the E-Bayesian and hierarchical Bayesian estimates of & associated to the IWD
according to formulas that have been obtained.

Step (5): We repeated this process 10000 times and compute the absolute bias (ABias) and mean square error
(MSE) for the estimates for different sample sizes and given values of 4, c and w

Where

ABias () =‘é—9‘ MSE (6) :ﬁZ(@—@)z

and @ stands for an estimator of @ . The simulation results are viewed in Tables 1-4.

Table 1. Averaged values of ABias and MSEs for estimates of the parameter ¢ based on BSELF

7 0., 0,0,
ABias MSE ABias MSE
15 1.0070028 0.4796970 1.0751591 0.5502426
0.9732256 0.4470480 1.0748000 0.5498963
0.9394484 0.4155747 1.0679751 0.5429536
25 0.7437928 0.2640674 0.7956031 0.3044828
0.7168066 0.2445895 0.7950753 0.3041068
0.6898204 0.2258747 0.7877187 0.2985288
35 0.5613121 0.1523152 0.6013551 0.1765609
0.5391035 0.1400339 0.6005888 0.1761497
0.5168950 0.1282810 0.5926188 0.1715355
50 0.4177900 0.0856861 0.4479716 0.0997884
0.3994477 0.0780095 0.4468238 0.0993307
0.3811053 0.0707016 0.4380879 0.0955187
70 0.3175326 0.0506737 0.3405479 0.0592816
0.3018943 0.0455763 0.3388726 0.0587725
0.2862559 0.0407550 0.3293457 0.0555444
100 0.2100934 0.0234358 0.2248963 0.0275933
0.3073146 0.0205514 0.2221054 0.0270156
0.1847028 0.0178597 0.2116522 0.0245279
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Table 2. Averaged values of ABias and MSEs for estimates of the parameter ¢ based on PLF

n éEBP é"}?P
ABias MSE ABias MSE
15 0.9622578 0.4360601 1.0765185 0.5516179
0.9056845 0.3847179 1.0759232 0.5510431
0.8491112 0.3366737 1.0645482 0.5394842
25 0.7100372 0.2392957 0.7971523 0.3056475
0.6647446 0.2087013 0.7962794 0.3050247
0.6194520 0.1802565 0.7840181 0.2957424
35 0.5355267 0.1376350 0.6031474 0.1775850
0.4981513 0.1183598 0.6018844 0.1769053
0.4607759 0.1005811 0.5886000 0.1692320
50 0.3987801 0.0773118 0.4501188 0.1007058
0.3677878 0.0652576 0.4482361 0.0999520
0.3367955 0.0542561 0.4336701 0.0936183
70 0.3035900 0.0457069 0.3431674 0.0601369
0.2770295 0.0376892 0.3404335 0.0593016
0.2504691 0.0304683 0.3245247 0.0539407
100 0.2023822 0.0212342 0.2286103 0.0284034
0.1805722 0.0166678 0.2240774 0.0274569
0.1587622 0.0126705 0.2064656 0.0233119

Table 3. Averaged values of ABias and MSEs for estimates of the parameter ¢ based on ELF

n HEBE HHBE
ABias MSE ABias MSE
15 0.9472240 0.4225737 1.0594803 0.5343403
0.8914860 0.3727779 1.0588753 0.5337653
0.8357481 0.3261836 1.0475005 0.5223903
25 0.6939879 0.2286402 0.7788035 0.2917947
0.6496444 0.1993613 0.7779096 0.2911717
0.6053009 0.1721429 0.7656486 0.2821046
35 0.5183290 0.1289875 0.5832928 0.1661569
0.4820405 0.1108701 0.5819857 0.1654769
0.4457520 0.0941635 0.5687033 0.1580592
50 0.3801373 0.0703154 0.4283531 0.0912912
0.3504159 0.0592907 0.4263744 0.0905373
0.3206946 0.0492343 0.4118257 0.0845190
70 0.2833044 0.0398852 0.3192074 0.0521472
0.2582429 0.0328181 0.3162854 0.0513155
0.2331814 0.0264604 0.3004762 0.0463580
100 0.1790140 0.0167392 0.2005630 0.0220308
0.1591776 0.4225737 1.0594803 0.5343403
0.1393412 0.3727779 1.0588753 0.5337653
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Table 4. Averaged values of ABias and MSEs for estimates of the parameter ¢ based on DLF

n = =
ABias MSE ABias MSE
15 0.9672856 0.4406176 1.0822170 0.5574578
0.9104329 0.3887529 1.0816249 0.5568831
0.8535802 0.3402190 1.0702501 0.5452629
25 0.7154120 0.2429184 0.8032981 0.3103592
0.6698015 0.2118770 0.8024321 0.3097365
0.6241911 0.1830155 0.7901710 0.3003825
35 0.5412964 0.1405991 0.6098057 0.1815054
0.5035564 0.1209274 0.6085620 0.1808260
0.4658163 0.1027816 0.5952779 0.1730674
50 0.4050512 0.0797400 0.4574452 0.1039787
0.3736314 0.0673291 0.4555941 0.1032255
0.3422116 0.0560003 0.4410254 0.0967866
70 0.3104372 0.0477616 0.3512663 0.0629663
0.2833708 0.0394097 0.3485943 0.0621311
0.2563044 0.0318851 0.3326605 0.0566357
100 0.2103298 0.0228854 0.2381894 0.0307656
0.9672856 0.0179989 0.2337885 0.0298118
0.9104329 0.0137170 0.2159957 0.0254559

7 Conclusion Remarks

The E-Bayesian and hierarchical Bayesian estimates of the scale parameter of IWD are computed based on
DGOS. The results are specialized to the lower record values. It has been noticed, from Tables 1-4, that the
ABias and MSE of the resulting estimates decreses as the sample size increases. Numerical computations
showed that the E-Bayesian estimates have smaller ABias and MSE than the hierarchical Bayesian estimates
based on various loss functions and different sample sizes. Furthermore, in comparing the E-Bayesian
estimates under different loss functions, we can deduct that the E-Bayesian estimates based on ELF are the
most efficient whearse the E-Bayesian estimates based on BSELF are the least efficient in all cases. Finally,
this work is showed that E-Bayesian criteria can provide more efficient estimates than the hierarchical
Bayesian approach under DGOS.
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Appendix 1

Proof of Lemma 1.

(i) From Egs. (22), (23) and (24), we get

émmz _émm = AEBB] _éEEBZ :(wj{[l+ﬂjln(l+%)—2j|. (Al)

C C

2 3 4 © k
For —1<x <1, we have: In(1+x :x—x—+x——x—+...: -1 Hx—.
(1+x) — Z( )

Assuming x =< when0<c <H ,0<i<1,weget
H H
2 3 4
[1+2ijln(l+ij—2:[l+2ij e _Lfe +l 03 1 04 +
c H c H 2\ H? 3\H 4\ H
2 1) ¢? 1 2) e ) (2 1)< 1 2)( ¢
=l == || = |+|=—= +| === +| === +
3 2 2 3 4)\H® 5 4)\H* 5 6)\H®

=< (1—ij+ ¢ £9—8—Cj+... >0. (A.2)
6H'\ H) 60H'\ H

According to Egs.(A.1) and (A.2), we have

A A A A

HEBBZ _95333 = Ugspi _HEBBZ >0
Thatis 6,,,. <6, . <6

EBB3 EBB2 EBB1

(i1) From Egs. (A.1) and (A.2), we get

111152(0513132 - EEBs) = },11;2(‘95331 _‘95332)

_ 2 4
=((l W)(””)]lim ¢ (1—i)+ ¢ 4(9—8—cj+... 0. (A3)
c x| 6 *? H 60H H
That is 1111£2 Orppr = 1111310 Orpsr = L{E Oy -

Proof of Lemma 2.

(i) From Egs. (30), (31) and (32), we get

0..-0. =60 -0 :[—\MM]HI+£jm(I+%J—2} (A4)

r2 ~ YEBP3 EBP1 EBP2
c c
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According to Egs.(A.2) and (A.4), we have

HEBPZ _HEBP3 = Uppr _HEBPZ >0.
Thatis 6,,,, <6,,,, <0,,,.

(i1) From Egs. (A.3) and (A.4), we get

]l_,iin(éﬁkpz _éERP3) = y{g(éﬁ‘kﬁl _éERPZ)

0

H—w

c 6H* H 60H*

:[ (n+1)(n+2)Jlim{ c’ (l_ij+ ¢’ [9 8CJ+..1:0 (A5)

That is 111133 eEEPl = 111112 9531’2 = l}g} 658[’3 .

Proof of Lemma 3.

(i) From Egs. (35), (36) and (37), we obtain

X - S 2H
951352 _951353 = 051351 _9/:1152 = (ij{(l +_j In £1+i)_2j| . (A6)
c c H

According to Egs.(A.2) and (A.6), we have

éEBEz_é = ) _é

EBE3 EBE1 EBE2

>0.

Thatis 9. <6

EBE3 EBE 2 < 9EBE1 °

(i1) From Egs. (A.3) and (A.6), we get

. (A A . A - n).. c’ c c’ 8¢
ngo(eﬁﬁbz = Oy ) - [l~11£2 (HEBEI _95352) = [:j,l}g}o|:6l_]z (1 _gj+m(9 _;j+i| =0 (A7)
That is 1111£E éEEEl = LIEE éEEEZ Ll 1 éEBES

Proof of Lemma 4.

(i) FromEgs. (40), (41) and (42) that

él:KDZ _él:BDS = AEBD] _él:BDZ _(n:2j|:[l+zTHJln[l+%j_2:| . (A8)

According to Egs.(A.2) and (A.8), we have

A A A A

0

EBD2 95503 = Ykgp1 — 95502

>0.
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That is 4 <0

<40

QEBD1 *

(ii) From Egs. (A.3) and (A.8), we get

9551)2 - 9551)3 ) = lim (éEBDI - éEBDZ )

Hom EBD2

H—x

2 4
S (e PP G PN IR (PO I B (A.9)
c Jilem’\" H) 60H'\ H

=lim g, .

é
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Appendix 2

Proof of Lemma 5.

Since, a(c —a), are continuous on (0,c), based on the extended case of mean value theorem for

definite integrals [when 0 <a <c,a(c —a) > 0 ], there is as least one number a, € (0,c) such that

ca(c—a)d 1 ¢ }
J. alc —a) czl = 5 I a(c —a)da =C—2. (B.1)
o (a+H)Y"” (a,+H)" 6(aq+H)"™
Similarly, there is as least one number a, € (0,c) such that
ca(c —a)d 1 ¢ }
.[ alc —a) ? = - I a(c —a)da :c—l. (B.2)
o (@a+H)" (a,+H)" o 6(a, +H)"™
By substitution from Egs.(B.1) and (B.2) in Eq. (49), we get
- own (A=) a+H
Oy =—+ . B.3
o H [ a+H a+H ®3)
By taking the limit as H tends to oo for both sides of Eq. (B.3), we obtain
n+l
limd,,,, = lim{ W[ {20 D a8 L (B.4)
o el H a +H a +H
According to Egs.(A.3) and (B.4), we can deduct that
LIEE eEBBI - ngl eHRBI
1 . .
Also a,w are continuous on (0,¢), according to the extended case of mean value theorem for
a+
definite integrals (when 0 <a <c ), there is as least one number ¢, € (0,c) such that
c d 1 c 2
i ], o =S (B:5)
o(@+H)"” (a+H)" Jo 2(a, +H)"
Similarly, there is as least one number a, € (0,c) such that
J-c ada . 1 IJ"ada=c—1' (B.6)
o(@+H)Y" (a,+H)" b 2a,+H)"
By substitution from Egs.(B.5) and (B.6) in Eq. (50), we get
- wn (A=w)n+)\[a,+H |
Orppr, =—+ 2 . B.7
e H ( a+H j{a,#{} el
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By taking the limit as H tends to o for both sides of Eq. (B.7), we obtain

]l_liméHBBz :Lim{w—n.q.[(l—w )(n +1)]{a2 +H }nﬂ}zo | .

” H a+H a +H

According to Egs.(A.3) and (B.8), we can deduct that

11[151;1; gEBB 2 = 111121 HIIBB 2
1 .
Furthermore a’, W are continuous on (0,c), based on the extended case of mean value theorem
a—+

for definite integrals (when 0 <a < ¢ ), there is as least one number «, € (0,c) such that

c 2 c 2
[ da _ 1 zjazda:SC—z. (B.9)
o @+HY”? (@ +H)" 3a, +H)"

Similarly, there is as least one number a, € (0,c) such that

2

f‘ ada__ 1 J"azda - < (B.10)
o(a+H)Y™" (a,+H)™ o 3a, +H)™" .

By substitution from Eqs.(B.9) and (B.10) in Eq. (51), we get

n+l
éHB“_M+((l—w)(n+l)j{az+H} ' B
H a +H a +H

By taking the limit as H tends to o© for both sides of Eq. (B.11), we obtain

fimd,... =Li52{ﬂ+{(l_w )(n”)]{“ﬂ }=0 - (B.12)

” H a+H a +H
According to Egs. (A.3) and (B.12), we can deduct that
[1_11511 QEBB 3 = }_11_1}1 QHBB 3°

Proof of Lemma 6.

By using similar steps in lemma (5), we can get

J.u a(c —a)dc}l _ 1 : J.Ca(c a)da= c’ . (B.13)
o (@a+H)"  (aq,+H)" 6(aq, +H)"™
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By substitution from Eqs.(B.2) and (B.12) in Eq. (55), we get

i D+ [a,+H " . (B.14)
ar (a,+H) a+H
By taking the limit as H tends to o for both sides of Eq. (B.14), we obtain
limd,,,, = lim (D +2)\a et |7 _ (B.15)
TP i (a,+H)’ a +H

According to Egs.(A.5) and (B.15), we can deduct that

0, =0

EBP1 HBP1 *

Similarly, we can obtain

= hm9

HBPi

(i =2,3).

Proof of Lemma 7.

By using similar steps in lemma (5), we can get

¢ —_ 1 3
J- alc a)dfl - (c a)da = C—l, (B.16)
o (a+H)"  (a,+H)" 6(q, +H)"
3
I”@ a)da _ ja@—m@=——ﬁ——< (B.17)
(a+H) (a +H) 6(aq, +H)"
By substitution from Egs.(B.16) and (B.17) in Eq. (61), we get
A n a,+H |
6. = -2 |. B.18
18 [al +H j|:al +H} ( )
By taking the limit as H tends to o for both sides of Eq. (B.18), we obtain
n a,+H |
hm@ =lim ——| $=0. B.19
e ”””{(al +HJLZI +H} } ( )

According toEgs.(A.7) and (B.19), we can deduct that

hm )

EBE1 HBE1 *

= hm 0
H—
Similarly, we can obtain

= hm9

HBEi

(i =2,3).
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Proof of Lemma 8.

Bysubsitituting from Eqgs. (B.1) and (B.13) in Eq. (67), we get

n+l
n+2 a, +H
0, = hae BALLES B B.20
e (a]+Hj{al+H} (B-20)

>

By taking the limit as H tends to o for both sides of Eq. (B.20), we obtain

n+l
A n+2 \la,+H
limé@,,,, = lim T =0. B.21
He HEPL [a +HJL:, +H} ®.21)
According to Egs.(A.9) and (B.21), we can deduct that

[l{lill 0531)1 = [l{lil} eHEDl .

Similarly, we can obtain

0

=1im@,,, (i =2,3).
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