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Abstract 
 

This paper is devoted to compare the E-Bayesian and hierarchical Bayesian estimations of the scale 
parameter corresponding to the inverse Weibull distribution based on dual generalized order statistics. 
The E-Bayesian and hierarchical Bayesian estimates are obtained under balanced squared error loss 
function (BSELF), precautionary loss function (PLF), entropy loss function (ELF) and Degroot loss 
function (DLF). The properties of the E-Bayesian and hierarchical Bayesian estimates are investigated. 
Comparisons among all estimates are performed in terms of absolute bias (ABias) and mean square error 
(MSE) via Monte Carlo simulation. Numerical computations showed that E-Bayesian estimates are more 
efficient than the hierarchical Bayesian estimates. 
 

 
Keywords: E-Bayesian estimates; inverse Weibull distribution; hierarchical Bayesian estimates; loss 

functions; Monte Carlo simulation.  
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1 Introduction 
 
The inverse Weibull distribution has great importance in many applications including the dynamic 
components of diesel engines and several data sets such as the times to breakdown of an insulating fluid 
subject to the action of a constant tension (see Nelson [1]). Several authors have studied the inverse Weibull 
distribution; for examples, Calabria and Pulcini [2] have obtained two sample Bayesian prediction for 
inverse Weibull model in complete samples. Kundua and Howlader [3] have constructed one and two 
sample predictive posteriors of the future order statistics from inverse Weibull distribution based on type-ii 
censoring. Abd Ellah [4] has obtained the non-Bayesian and Bayesian estimates for parameters and 
reliability function for inverse Weibull distribution based on generalized order statistics. Singh et al. [5] have 
studied the classical and Bayesian approaches in estimating the unkown parameters of inverse Weibull 
distribution under type-i and type-ii censored data. Singh et al. [6] have discussed the Bayesian technique for 
prediction of the future samples from inverse Weibull distribution based on type-ii hybrid censoring. 
Yahgmaei et al. [7] have used the maximum likelihood and Bayesian schemes to estimate scale parameter of  
the inverse Weibull distribution. The probability density function (pdf) and cumulative distribution function 
(cdf) of the inverse Weibull distribution (IWD) are given respectively as 
 

1( ) , 0, , 0,xf x x e x


   


                                                                                      (1) 
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   .                                                                                 (2) 

 
where   and   are the scale and shape parameters respectively.  
 
Order statistics are widely used in statistical inferences and modelling purposes. Kamps [8] introduced the 
concept of the generalized order statistics (GOS) as a unified scheme to many models of ordered random 
variables such as ordinary order statistics, upper record values and sequential order statistics. Burkschat et al. 
[9] proposed the dual generalized order statistics (DGOS) as a dual model of GOS and a unification of 
various models of decreasingly ordered random variables such as reversed order statistics, lower record 
values and lower pfeifer record. Given a random sample drawn from an absolutely continuous distribution 
function (cdf) F with corresponding probability density function (pdf) f , the joint density function of the 
first n  DGOS can be written as 
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such that ( )( 1) 0i k n i m      for all  1,...,i n . The lower record values of size n can be derived 

from the DGOS procedure as a special case by taking 1m   and 1k  . 
 
The E-Bayesian is a new approach of estimation was first proposed by Han [10]. Many authors studied the 
E-Bayesian technique such as, Han [11] estimated the reliability parameter of the exponential model by 
using the E-Bayesian and hierarchical Bayesian methods under type-i censored samples and by considering 
the quadratic loss function.Yin and Liu [12] used the E-Bayesian and hierarchical Bayesian estimation 
schemes in estimating the reliability parameter of geometric distribution under scaled squared loss function 
in complete samples. Wei et al. [13] obtained the E-Bayesian and minimum risk equivariant estimates for the 
Burr-XII distribution based on entropy loss function in complete samples. Jaheen and Okasha [14] estimated 
the parameter and reliability function of Burr-XII distribution by using the E-Bayesian and Bayesian 
methods under squared error and LINEX loss functions based on type-ii censored data. Cai et al. [15] 
constructed the E-Bayesian approach for forecasting of security investment. Okasha [16] derived the 
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maximum likelihood, Bayesian and E-Bayesian estimators for the parameter, reliability and hazard functions 
associated to the Weibull distribution under type-ii censoring. Azimi et al. [17] obtained the E-Bayesian and 
Bayesian estimates for parameter and reliability function of the generalized half Logistic distribution under 
progressively type-ii censored data and by using symmetric and asymmetric loss functions. Javadkani et al. 
[18] used the Bayesian, empirical Bayesian and E-Bayesian methods in estimating shape parameter and 
reliability function of the two parameter bathtub-shaped lifetime distribution based on progressively first-
failure-censoring and by using the minimum expected and LINEX loss functions. Liu et al. [19] derived the 
E-Bayesian and hierarchical Bayesian estimates for the Rayleigh distribution under q-symmetric entropy 
loss function in complete samples. Reyad and Othman [20] obtained the Bayesian and E-Bayesian estimates 
for shape parameter of the Gumbell type-ii model based on type-ii censoring and by considering squared 
error, LINEX, Degroot, quadratic and minimum expected loss functions. Reyad and Othman [21] derived 
the E-Bayesian and Bayesianestimators for the Kumaraswamy distribution under type-ii censored data and 
by using different symmetric and asymmetric loss functions. Reyad et al. [22] compared the E-Bayesian, 
hierarchical Bayesian, Bayesian and empirical Bayesian estimates of shape parameter and hazard function 
cooresponding to the Gompertz model under type-ii censoring and by using squared error, quadratic, entropy 
and LINEX loss functions. Reyad et al. [23] obtained the QE-Bayesian, quasi-bayesian, quasi-hierarchical 
Bayesian and quasi-empirical Bayesian estimates for the scale parameter of the Erlang distribution under 
different loss functions in complete samples. Reyad et al. [24] compared the QE-Bayesian and E-Bayesian 
estimation methods in estimating the scale paramter of the Frechet distribution based on squared error, 
entropy, weighted balanced and minimum expected loss functions in complete samples. 
 

The paper aims to compare the E-Bayesian and hierarchical Bayesian approaches in estimating scale 
parameter associated to the inverse Weibullmodel based on DGOS. The resulting  estimates are derived 
under different loss functions and specialized to lower record values. The properties of the E-Bayesian 
estimates are studied and the relations among E-Bayesian and hierarchical Bayesian estimates are 
investigated.  
 

The remainder of this study is organized as follow. In Section 2, the various loss functions will be used in 
this study are viewed and posterior distribution is derived. The E-Bayesian estimates for   are derived 
under BSELF, PLF, ELF and DLF in Section 3. In Section 4, the hierarchical Bayesian estimates for   are 
obtained under BSELF, PLF, ELF and DLF. In Section 5, the properties of the E-Bayesian and hierarchical 
Bayesian estimates are investigated. In Section 6, numerical computations are used to assess the 
performance of the resulting estimates. Finally, some concluding remarks are presented in Section 7. 
 

2 The Loss Functions and Posterior Distribution 
 
In this section, we referred to the various loss functions concerned in this paper and derived the posterior 
distribution associated to IWD. 
 

2.1 The loss functions 
 
We will use the following loss functions: 
 
2.1.1 The balanced squared error loss function (BSELF) 
 

Ahmadi et al. [25] defined the balanced sequred error loss function (BSELF)to be: 
 

2

1

2ˆ ˆ ˆ( , ) ( ) (1 )( )L w w          .                                                                                             (4) 
 

where w is a suitable positive weight function, ̂  is an estimator of  ,   is a prior estimator of   obtained 

usually by either maximum likelihood or least squares methods and 2ˆ( ) 
 is the squared error loss 

function. The Bayes estimator of   relative to the BSELF denoted by ˆ
BB

  can be obtained as  
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ˆ (1 ) ( )
BB hw w E x     .                                                                                                             (5) 

 

provided that the expectation corresponding to posterior distribution; ( )hE x  exisits and finite. 

 
2.1.2 The precautionary loss function (PLF) 
 
Nostrom [26] defined the precautionary loss function (PLF) as follows: 
 

2

2

ˆ( )ˆ( , )
ˆ

L
 

 



 .                                                                                                                           (6) 

 

The Bayes estimator of   based on PLF denoted by ˆ
B P

  can be obtained as  
 

1
2 2ˆ ( )BP hE x     .                                                                                                                         (7) 

 

provided that the expectation 
2( )hE x  exisits and finite. 

 

2.1.3 The entropy loss function (ELF) 
 
Day et al. [27] have discussed the entropy loss function (ELF) of the form: 
 

3

ˆ ˆ
ˆ( , ) ln 1L
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where ̂  is an estimator of  . The Bayes estimator of   relative to ELF denoted by ˆ
B E

  can be obtained as 
  

1
1ˆ ( )

BE hE x 


    .                                                                                                                         (9) 

 

provided that the expectation 
1( )hE x 

 exisits and finite. 

 

2.1.4 The degroot loss function (DLF) 
 
The Degroot loss function (DLF) is introduced by Degroot [28] to be: 
 

4

ˆ
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ˆ
L

 
 



 
  
 

.                                                                                                                           (10) 

 

The Bayes estimator relative to DLF denoted by ˆ
BD
  can be obtained as  
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h

h
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 .                                                                                                                            (11) 

  

provided that the expectations 
2( )hE x , ( )hE x  are exisit and finite.  
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2.2 The posterior distribution 
 
Assume that (1, , , ),..., ( , , , )X n m k X n n m k be n  DGOS taken from IWD, the likelihood function can be 

obtained by subsituting from Eqs. (1) and (2) in Eq. (3) to be  
 

1
1

11
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n n
i i n

ii

L x x m x kx      


   



    
       

        
 .                                              (12) 

 
Assuming   is known, then the likelihood function in Eq. (12) become 
 

( ) n HL x e    .                                                                                                                         (13) 

 
Where 
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We can use the exponential distribution as a conjugate prior distribution of   with rate parameter a  and its 
pdf given by  
 

( ) , 0, 0ag a a e a                                                                                  (15) 

 
From the Bayes theorem, the posterior distribution of   can be obtained by combining Eqs. (13) and (15) to 
be 
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.                                     (16) 

 

That mean, the posterior distribution of   obeys ( , 1).H a n    

 

3 The E-Bayesian estimation  
 
In this section, we have obtained the E-Bayesian estimates for scale parameter of IWD under BSEL, PLF, 
ELF and DLF. 
 

Based on Han [29], the hyperparameter a  must be selected to guarantee that ( )g a  given in Eq. (15) is a 

decreasing function of  . The derivative of ( )g a  with respect to   is 

 

 2
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( )exp
dg a

a a
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   .                                                                                                             (17) 

 

Note that 0a   and 0   leads to for any value of 0 ,a   imply to 
( )

0
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 , and therefore 

( )g a is a decreasing function of  . Consequently, it is convention to choose the hyperparameter a  under 
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the restriction 0 ,a c   where c  is a given upper bound (c  is a positive constant). Then, we can use the 

following hyperprior distributions of a introduced by Han [30]. 
 

1 2

2( )
( ) , 0 ,

c a
a a c

c



                                                                                        (18) 

 

2

1
( ) 0a a c

c
    .                                                                                     (19) 

 
And 
 

3 2

2
( ) , 0

a
a a c

c
    .                                                                                    (20) 

 

3.1 The E-Bayesian estimation under BSELF 
 
Theorem 1. Assuming BSELF in Eq. (4), the posterior distribution in Eq. (16) and the hyperprior 
distributions of a  in Eqs. (18), (19) and (20), we have two conclusions: 
 

(i) The Bayesian estimate ˆ
BB
 of   based on BSELF is 

  

1ˆ (1 )BB

wn n
w

H H a


 
     

.                                                                                                             (21) 

 

(ii) The E-Bayesian estimates 
1

ˆ
EBB
 , 

2
ˆ
EBB
  and 

3
ˆ
EBB
 of   based on 1( )a , 

2
( )a and 

3
( )a  respectively 

relative to BSELF are the following: 
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And 
 

3

2(1 )( 1)ˆ 1 ln 1
EBB
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.                                                                       (24) 

 
Proof. (i) The natural logarithm of the likelihood function in Eq. (13) is given by 
 

( ) lnn H    .                                                                                                                         (25) 

 
Differentiating Eq. (25) with respect to   and equating the result to zero, then the likelihood equation for   
is given by 
 

( )
0

n
H



 


  




.                                                                                                                        (26) 

 



 
 
 

Reyad et al.; JAMCS, 23(1): 1-29, 2017; Article no.JAMCS.34540 
 
 
 

7 
 
 

The maximum likelihood estimator  of   can be obtained by solving Eq. (26) to be 
 

n

H
   .                                                                                                                                           (27) 

We can derive ( )hE x by using Eq. (16) to be  

 
1

( )

0

( ) 1
( )

( 1)

n
n H a

h

H a n
E x e d

n H a
   


   

  
    

 .                                                                (28) 

 

Consequentely, the Bayesian estimate ˆ
BB
  can be obtained by using Eqs. (27) and (28) in Eq. (5) to be 

 

1ˆ (1 )
BB

wn n
w

H H a


 
     

.  

 

 (ii) The E-Bayesian estimate
1

ˆ
EBB
 based on 1( )a can be obtained  by using Eqs. (18) and (21) to be 

 

1
0 2

1 2( ) 2(1 )( 1)ˆ (1 ) 1 ln 1 1
c
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wn n c a wn w n H c
w da
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 . 

 

Similarly, the E-Bayesian estimates 
2

ˆ
EBB
 , 

3
ˆ

EBB
  based on 2

( )a , 
3 ( )a  can be obtained by using Eqs. (19), 

(21) and Eqs. (20), (21) respectively to be 
 

2
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3
0 2
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c
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 . 

 

3.2 The E-Bayesian estimation under PLF 
 
Theorem 2. Assuming PLF in Eq. (6), the posterior distribution in Eq. (16) and the hyperprior distributions 
of a  in Eqs. (18), (19) and (20), we have two conclusion: 

 

(i) The Bayesian estimate ˆ
BP
 of   based on PLF is  

 

( 1)( 2)ˆ
BP

n n
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(ii) The E-Bayesian estimates 
1

ˆ
EBP
 , 

2
ˆ

EBP
  and 

3
ˆ

EBP
 of   based on 1( )a , 

2
( )a  and 

3
( )a  

respectively relative to PLF are the following: 
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2

( 1)( 2)ˆ ln 1
EBP

n n c

c H


   
  

 
.                                                                                                   (31) 

 
And 

3

2 ( 1)( 2)ˆ 1 ln 1
EBP

n n H c

c c H
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Proof. (i) By using Eq. (16),we get 
 

 2

1
2 ( )
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( ) ( 1)( 2)
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n
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h
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Then, the Bayesian estimate ˆ
BP
  can be obtained by using Eq. (33) in Eq. (7) to be 

 

2

( 1)( 2)( 1)( 2)ˆ
( )

BP

n nn n

H aH a


  
 


. 

 

(ii) The E-Bayesian estimate 
1

ˆ
EBB
  based on 1( )a  can be obtained  by using Eqs. (18) and (29) to be 

 

1
0 2

( 1)( 2) 2 ( 1)( 2)2( )ˆ 1 ln 1 1
c

EBP
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 . 

 

Similarly, the E-Bayesian estimates 
2

ˆ
EBB
 , 

3
ˆ
EBB
 based on 2 ( )a , 

3
( )a  can be obtained by using Eqs. (19), 

(29) and Eqs. (20), (29) respectively to be 
 

2
0

( 1)( 2) ( 1)( 2)1ˆ ln 1
c

EBP

n n n n c
da

H a c c H


      
         
 . 

 

And 
 

3
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( 1)( 2) 2 ( 1)( 2)2ˆ 1 ln 1
c

EBP

n n n na H c
da

H a c c Hc


         
                 
 . 

 

3.3 The E-Bayesian estimation under ELF 
 
Theorem 3. Assuming ELF in Eq. (8), the posterior distribution in Eq. (16) and the hyperprior distributions 
of a  in Eqs. (18), (19) and (20), we have two conclusion: 
 
 

(i)  The Bayesian estimate ˆ
BE
 of   based on ELF is  

 

ˆ
BE

n

H a
 


.                                                                                                                                    (34) 

 

(ii) The E-Bayesian estimates 
1

ˆ
EBE
 , 

2
ˆ
EBE
  and 

3
ˆ

EBE
 of   based on 1( )a , 

2
( )a and 

3
( )a respectively 

relative to PLF are the following: 
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1

2ˆ 1 ln 1 1 ,
EBE

n H c

c c H


    
       

    
                                                                                                 (35) 

 

2
ˆ ln 1

EBE

n c

c H


 
  

 
.                                                                                                                        (36) 

 

And 
 

3

2ˆ 1 ln 1
EBE

n H c

c c H


    
      

    
.                                                                                                     (37) 

 
Proof. (i) By usingEq. (16), we get 
 

 1

1
1 ( )

0

( )

( 1)

n
n H a

h

H a H a
E x e d

n n
   


  
  

  
   

 .                                                              (38) 

 

Then, the Bayesian estimate ˆ
BE
  can be obtained by using Eq. (38) in Eq. (9) to be 

 
1

ˆ
BE

H a n

n H a



 

    
. 

 

(ii) The E-Bayesian estimate
1

ˆ
EBE
  based on 1

( )a  can be obtained  by using Eqs. (18) and (34) to be 
 

1
0 2

2( ) 2ˆ 1 ln 1 1
c

EBE

n c a n H c
da

H a c c Hc


      
               
 . 

 

Similarly, the E-Bayesian estimates 
2

ˆ
EBB
 , 

3
ˆ

EBB
  based on 2 ( )a , 

3
( )a can be obtained by using Eqs. (19), 

(29) and Eqs. (20), (29) respectively to be 
 

2
0

1ˆ ln 1
c

EBE

n n c
da

H a c c H


   
        . 

 

And 
 

3
0 2

2 2ˆ 1 ln 1
c

EBE

n a n H c
da

H a c c Hc


      
              
 . 

 

3.4 The E-Bayesian estimation under DLF 
 
Theorem 4. Assuming DLF in Eq. (10), the posterior distribution in Eq. (16) and the hyperprior distributions 
of a  in Eqs. (18), (19) and (20), we have two conclusion: 
 

(i) The Bayesian estimate ˆ
BD
  of   based on PLF is  

 

2ˆ
BD

n

H a






.                                                                                                                                   (39) 

 



 
 
 

Reyad et al.; JAMCS, 23(1): 1-29, 2017; Article no.JAMCS.34540 
 
 
 

10 
 
 

(ii) The E-Bayesian estimates 
1

ˆ
EBD
 , 

2
ˆ

EBD
  and 

3
ˆ

EBD
 of   based on 1

( )a , 
2
( )a  and 

3
( )a  

respectively relative to DLF are the following: 
 

1

2( 2)ˆ 1 ln 1 1 ,EBD

n H c

c c H


     
       

    
                                                                                        (40) 

 

2

( 2)ˆ ln 1EBD

n c

c H


  
  

 
.                                                                                                                (41) 

 
And 
 

3

2( 2)ˆ 1 ln 1
EBD

n H c

c c H


     
      

    
.                                                                                            (42) 

 

Proof. (i) The Bayesian estimate ˆ
BD
  can be obtained by using Eqs. (28) and (33) in Eq. (11) to be 

 
2( 1)( 2) ( ) 2ˆ

( 1) ( )
BD

n n H a n

n H a H a


   
 

  
. 

 

(ii) The E-Bayesian estimate
1

ˆ
EBB
  based on 1

( )a  can be obtained  by using Eqs. (18) and (42) to be 

 

1
0 2

2 2( ) 2( 2)ˆ 1 ln 1 1
c

EBD

n c a n H c
da

H a c c Hc


        
               
 . 

 

Similarly, the E-Bayesian estimates 
2

ˆ
EBB
 , 

3
ˆ
EBB
 based on 2 ( )a , 

3
( )a  can be obtained by using Eqs. (19), 

(29) and Eqs. (20), (29) respectively to be 
 

2
0

2 1 ( 2)ˆ ln 1
c

EBD

n n c
da

H a c c H


    
         

 
And 
 

3
0 2

2 2 2( 2)ˆ 1 ln 1
c

EBD

n a n H c
da

H a c c Hc


       
              
 . 

 

4 The Hierarchical Bayesian Estimation  
 
In this section, the hierarchical Bayesian estimates for scale parameter of IWD based on BSEL, PLF, ELF 
and DLF are derived. 
 

Based to Lindley and Smith [31], if a  is hyperparameter in ,  the prior density function of   is ( )g a  

given in Eq. (15) and the hyperprior distributions of a  are given in Eqs. (18), (19) and (20), then the 
corresponding hierarchical prior distributions of   are given as the following: 
 

4 1 20 0

2
( ) ( ) ( ) ( ) ,

c c
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                                                                                 (43) 
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5 2
0 0

1
( ) ( ) ( )

c c
ag a a da ae da

c
       .                                                                                    (44) 

And 

2
6 3 20 0

2
( ) ( ) ( )

c c
ag a a da a e da

c

       .                                                                                  (45) 

 
According to Bayesian theorem, the hierarchical posterior distributions of   can be derived by combining 
Eqs. (13), (43), (44) and (45) to be 
 

( )

4 0
1

( 1)
4

0 0

( )( ) ( )
( ) ,

( ) ( ) ( 1) ( )( )

c
n H a

c
n

a c a e daL x
f x

L x d n a c a H a da

  


   

 


 


 

   



 
                                        (46) 
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2
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5

0 0

( ) ( )
( )

( ) ( ) ( 1) ( )

c
n H a

c
n

a e daL x
f x

L x d n a H a da
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And 
 

2 ( )

6 0
3

2 ( 1)
6

0 0

( ) ( )
( )

( ) ( ) ( 1) ( )

c
n H a

c
n

a e daL x
f x

L x d n a H a da

  


   

 


 

 

  



 
.                                                 (48) 

 

4.1 The hierarchical Bayesian estimation under BSELF 
 
Theorem 5. Assuming BSELF in Eq. (4), the hierarchical posterior distributions in Eqs. (46), (47) and (48), 

then the hierarchical Bayes estimates 
1

ˆ
HBB
 , 

2
ˆ

HBB
  and 

3
ˆ
HBB
 of   are the following: 

 

1

( 2)

0

( 1)

0

(1 )( 1) ( )( )
ˆ ,

( )( )
HBB

c
n

c
n

w n a c a H a da
wn

H
a c a H a da



 

 

   
 

 




                                                                   (49) 

 

2

( 2)

0

( 1)

0

(1 )( 1) ( )
ˆ

( )
HBB

c
n

c
n

w n a H a dawn

H
a H a da



 

 

  
 






.                                                                             (50) 

 

And 

3

2 ( 2)

0

2 ( 1)

0

(1 )( 1) ( )
ˆ

( )
HBB

c
n

c
n

w n a H a da
wn

H
a H a da



 

 

  
 






.                                                                          (51) 

 

Proof. We can derive ( ) , ( 1, 2,3)
ifE x i   by using Eqs. (46), (47) and (48) to be 
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1

( ) ( 2)

0 0 0

( 1) ( 1)

0 0

( ) ( 1) ( )( )
( ) ,

( 1) ( )( ) ( )( )

c cn H a n

f c c
n n

a c a e da d n a c a H a da
E x

n a c a H a da a c a H a da

  




   

   

 
    

  

     

  

 
                (52) 

 

2

( ) ( 2)

0 0 0

( 1) ( 1)

0 0

( 1) ( )
( )

( 1) ( ) ( )

c cn H a n

f c c
n n

a e da d n a H a da
E x

n a H a da a H a da

  




   

   

 
  

  

   

  

 
.                                    (53) 

 
And 
 

3

2 ( ) 2 ( 2)

0 0 0

2 ( 1) 2 ( 1)

0 0

( 1) ( )
( )

( 1) ( ) ( )

c cn H a n

f c c
n n

a e da d n a H a da
E x

n a H a da a H a da

  




   

   

 
  

  

   

  

 
.                                 (54) 

 

Therefore, the hierarchical Bayesian estimates 
1

ˆ
HBB
 , 

2
ˆ

HBB
  and 

3
ˆ

HBB
  can be obtained by using Eqs. (27), 

(52), (53) and (54) in Eq. (5) to be  
 

1

( 2)

0

( 1)

0

(1 )( 1) ( )( )
ˆ ,

( )( )
HBB

c
n

c
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H
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0
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ˆ

( )
HBB

c
n

c
n
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H
a H a da



 

 

  
 






. 

 
And 
 

3

2 ( 2)

0

2 ( 1)

0

(1 )( 1) ( )
ˆ

( )
HBB

c
n

c
n

w n a H a dawn

H
a H a da



 

 

  
 






. 

 

4.2 The hierarchical Bayesian estimation under PLF 
 
Theorem 6. Assuming PLF in Eq. (6), the hierarchical posterior distributions in Eqs. (46), (47) and (48), 

then the hierarchical Bayesian estimates 
1

ˆ
HBP
 , 

2
ˆ

HBP
  and 

3
ˆ
HBP
  of   are the following: 

 

1

( 3)

0

( 1)

0

( 1)( 2) ( )( )
ˆ ,

( )( )
HBP

c
n

c
n

n n a c a H a da

a c a H a da



 

 

   


 




                                                                          (55) 
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2

( 3)

0

( 1)

0

( 1)( 2) ( )
ˆ

( )
HBP

c
n

c
n

n n a H a da

a H a da



 

 

  







.                                                                                   (56) 

 
And 
 

3

2 ( 3)

0

2 ( 1)

0

( 1)( 2) ( )
ˆ

( )
HBP

c
n

c
n

n n a H a da

a H a da



 

 

  







.                                                                                 (57) 

 

Proof. We can derive 2( ) , ( 1, 2,3)
ifE x i   by using Eqs. (46), (47) and (48)  to be 

 

1

2 ( ) ( 3)

0 02 0

( 1) ( 1)
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 (58) 
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.                      (59) 

 
And 
 

3
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c cn H a n

f c c
n n

a e da d n n a H a da
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                     (60) 

 

Therefore, the hierarchical Bayesian estimates 
1

ˆ
HBP
 , 

2
ˆ

HBP
  and 

3
ˆ
HBP
  can be obtained by using Eqs. (58), 

(59) and (60) in Eq. (7) to be  
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4.3 The hierarchical Bayesian estimation under ELF 
 
Theorem 7. Assuming ELF in Eq. (8), the hierarchical posterior distributions in Eqs. (46), (47) and (48), 

then the hierarchical Bayesian estimates 
1

ˆ
HBE
 , 

2
ˆ

HBE
  and 

3
ˆ
HBE
 of   are the following: 
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.                                                                                                        (62) 

And 
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n a H a da

a H a da



 











.                                                                                                      (63) 

 

Proof. We can derive 1( ) , ( 1, 2,3)
ifE x i    by using (46), (47) and (48) to be 
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And 
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.                                    (66) 

 

Consequentely, the hierarchical Bayesian estimates 
1

ˆ
HBE
 , 

2
ˆ

HBE
  and 

3
ˆ

HBE
  can be obtained by using Eqs. 

(64), (65) and (66) inEq. (9) to be  
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4.4 The hierarchical Bayesian estimation under DLF 
 
Theorem 8. Assuming DLF in Eq. (10), the hierarchical posterior distributions in Eqs. (46), (47) and (48), 

then the hierarchical Bayesian estimates 
1

ˆ
HBD
 , 

2
ˆ

HBD
  and 

3
ˆ

HBD
  of   are the following: 
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Proof. The hierarchical Bayesian estimates 
1

ˆ
HBD
  can be obtained by using Eqs. (52) and (58) in Eq. (11) to 

be 
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Similarly, the hierarchical Bayesian estimates 
2

ˆ
HBD
  and 

3
ˆ

HBD
  can be obtained by using Eqs. (53), (59) and 

(54), (60) in Eq. (11) to be  
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5 Properties of the E-Bayesian and Hierarchical Bayesian Estimates 
 
In this section, we shall discussed the properties of E-Bayesian estimates and the relations among the E-
Bayesian and hierarchical Bayesian estimates.  
 

5.1 The relations between the E-Bayesian estimates 
 
In this subsection, we will construct the relations between the E-Bayesian and the hierarchical Bayesian 
estimates.  
 

5.1.1 Relations among ˆ ( 1, 2,3)
EBBi

i   

 
Lemma 1. It follows from Eqs. (21), (22) and (23) that 
 

(i)  
3 2 1

ˆ ˆ ˆ
EBB EBB EBB
    . 

 

(ii)  1 2 3
ˆ ˆ ˆlim lim limEBB EBB EBBH H H
  

  
  . 

 
Proof. See Appendix (1). 
 

5.1.2 Relations among ˆ ( 1,2,3)
EBPi

i   

 
Lemma 2. It follows from Eqs. (30), (31) and (32) that 
 

(i)  
3 2 1

ˆ ˆ ˆ
EBP EBP EBP
    . 

 

(ii)  1 2 3
ˆ ˆ ˆlim lim lim
EBP EBP EBPH H H
  

  
  . 

 
Proof. See Appendix (1).  
 

5.1.3 Relations among ˆ ( 1, 2,3)
EBEi

i   

 
Lemma 3. It follows from Eqs. (35), (36) and (37) that 

(i)  
3 2 1

ˆ ˆ ˆ
EBE EBE EBE
    . 

 

(ii)  1 2 3
ˆ ˆ ˆlim lim limEBE EBE EBEH H H
  

  
  . 

 
Proof. See Appendix (1).  
 

5.1.4 Relations among ˆ ( 1, 2,3)
EBDi

i   

 
Lemma 4. It follows from Eqs. (40), (41) and (42) that 
 

(i)  
3 2 1

ˆ ˆ ˆ
EBD EBD EBD
    . 

(ii)  1 2 3
ˆ ˆ ˆlim lim lim
EBD EBD EBDH H H
  

  
  . 
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Proof. See Appendix (1).  
 

5.2 The relations between theE-Bayesian and hierarchical Bayesian estimates  
 
In this subsection, we will construct the relations between the E-Bayesian and the hierarchical Bayesian 
estimates . 

5.2.1 Relations among ˆ ˆ, ( 1, 2,3)
EBBi HBBi

i    

 
Lemma 5. It follows from Eqs. (21), (22), (23), (49), (50) and (51) that 
 

      
ˆ ˆlim lim ( 1,2,3)
EBBi HBBi

H H
i 

 
  . 

 
Proof. See Appendix (2).  
 

5.2.2 Relations among ˆ ˆ, ( 1, 2,3)
EBPi HBPi

i    

 
Lemma 6. It follows from Eqs. (30), (31), (32), (55), (56)  and (57) that 
 

      
ˆ ˆlim lim ( 1,2,3)
EBPi HBPiH H

i 
 

  . 

 
Proof. See Appendix (2).  
 

5.2.3 Relations among ˆ ˆ, ( 1, 2,3)
EBEi HBEi

i    

 
Lemma 7. It follows from Eqs. (35), (36), (37), (61), (62)  and (63) that 
 

      
ˆ ˆlim lim ( 1,2,3)
EBEi HBEiH H

i 
 

  . 

 
Proof. See Appendix (2). 
 

5.2.4 Relations among ˆ ˆ, ( 1, 2,3)
EBDi HBDi

i    
 

Lemma 8. It follows from Eqs. (40), (41), (42), (67), (67)  and (69) that  
 

      
ˆ ˆlim lim ( 1,2,3)EBDi HBDiH H

i 
 

  . 

 

Proof. See Appendix (2). 

 
6 Numerical Computations 
 
The lower record values can be derived from the DGOS as a special case by taking 1m   and 1.k 
Consequentely, the resulting estimates obtained in the ealiar sections can be specialized to lower records. 
The E-Bayesian and hierarical Bayesian estimates of   are computed and compared based on a Monte Carlo 
simulation study described in the following steps: 
 
Step (1): Set the default values (true values) of  , c  and w  which are 3, 6 and 0.4 respectively. We used 

different sample sizes to investigate their effects on the resulting estimates. 
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Step (2): Based on  these cases, we generate a  from the uniform hyperprior distributions (0, )c  given in 

Eqs. (18), (19) and (20). For given values of a , we generate   from the expoential distribution 
given in Eq. (15).  

 
Step (3): Based on known values of  samples are generated from the IWD distribution given in Eqs. (1) 

and (2). 
 
Step (4): Computing the E-Bayesian and hierarchical Bayesian estimates of   associated to the IWD 

according to formulas that have been obtained. 
 
Step (5): We repeated this process 10000 times and compute the absolute bias (ABias) and mean square error 

(MSE) for the estimates for different sample sizes and given values of , c and w . 

 
Where 
 

21ˆ ˆ ˆ ˆ( ) ( ) ( )
10000

ABias MSE        
 

 

and ̂  stands for an estimator of  . The simulation results are viewed in Tables 1-4. 
 

Table 1. Averaged values of ABias and MSEs for estimates of the parameter   based on BSELF 
 

ˆ
HBB

  
ˆ

EB B
  

n  

MSE ABias MSE ABias 

0.5502426 1.0751591 0.4796970 1.0070028 15 

0.5498963 1.0748000 0.4470480 0.9732256 

0.5429536 1.0679751 0.4155747 0.9394484 

0.3044828 0.7956031 0.2640674 0.7437928 25 

0.3041068 0.7950753 0.2445895 0.7168066 

0.2985288 0.7877187 0.2258747 0.6898204 

0.1765609 0.6013551 0.1523152 0.5613121 35 

0.1761497 0.6005888 0.1400339 0.5391035 

0.1715355 0.5926188 0.1282810 0.5168950 

0.0997884 0.4479716 0.0856861 0.4177900 50 

0.0993307 0.4468238 0.0780095 0.3994477 

0.0955187 0.4380879 0.0707016 0.3811053 

0.0592816 0.3405479 0.0506737 0.3175326 70 

0.0587725 0.3388726 0.0455763 0.3018943 

0.0555444 0.3293457 0.0407550 0.2862559 

0.0275933 0.2248963 0.0234358 0.2100934 100 

0.0270156 0.2221054 0.0205514 0.3073146 

0.0245279 0.2116522 0.0178597 0.1847028 
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Table 2. Averaged values of ABias and MSEs for estimates of the parameter   based on PLF 
 

ˆ
HB P

  
ˆ

EB P
  

n  

MSE ABias MSE ABias 

0.5516179 1.0765185 0.4360601 0.9622578 15 

0.5510431 1.0759232 0.3847179 0.9056845 

0.5394842 1.0645482 0.3366737 0.8491112 

0.3056475 0.7971523 0.2392957 0.7100372 25 

0.3050247 0.7962794 0.2087013 0.6647446 

0.2957424 0.7840181 0.1802565 0.6194520 

0.1775850 0.6031474 0.1376350 0.5355267 35 

0.1769053 0.6018844 0.1183598 0.4981513 

0.1692320 0.5886000 0.1005811 0.4607759 

0.1007058 0.4501188 0.0773118 0.3987801 50 

0.0999520 0.4482361 0.0652576 0.3677878 

0.0936183 0.4336701 0.0542561 0.3367955 

0.0601369 0.3431674 0.0457069 0.3035900 70 

0.0593016 0.3404335 0.0376892 0.2770295 

0.0539407 0.3245247 0.0304683 0.2504691 

0.0284034 0.2286103 0.0212342 0.2023822 100 

0.0274569 0.2240774 0.0166678 0.1805722 

0.0233119 0.2064656 0.0126705 0.1587622 
 

Table 3. Averaged values of ABias and MSEs for estimates of the parameter   based on ELF 
 

ˆ
HBE

  
ˆ

EB E
  

n  

MSE ABias MSE ABias 

0.5343403 1.0594803 0.4225737 0.9472240 15 

0.5337653 1.0588753 0.3727779 0.8914860 

0.5223903 1.0475005 0.3261836 0.8357481 

0.2917947 0.7788035 0.2286402 0.6939879 25 

0.2911717 0.7779096 0.1993613 0.6496444 

0.2821046 0.7656486 0.1721429 0.6053009 

0.1661569 0.5832928 0.1289875 0.5183290 35 

0.1654769 0.5819857 0.1108701 0.4820405 

0.1580592 0.5687033 0.0941635 0.4457520 

0.0912912 0.4283531 0.0703154 0.3801373 50 

0.0905373 0.4263744 0.0592907 0.3504159 

0.0845190 0.4118257 0.0492343 0.3206946 

0.0521472 0.3192074 0.0398852 0.2833044 70 

0.0513155 0.3162854 0.0328181 0.2582429 

0.0463580 0.3004762 0.0264604 0.2331814 

0.0220308 0.2005630 0.0167392 0.1790140 100 

0.5343403 1.0594803 0.4225737 0.1591776 

0.5337653 1.0588753 0.3727779 0.1393412 
 
 



 
 
 

Reyad et al.; JAMCS, 23(1): 1-29, 2017; Article no.JAMCS.34540 
 
 
 

20 
 
 

Table 4. Averaged values of ABias and MSEs for estimates of the parameter   based on DLF 
 

ˆ
HBD

  
ˆ

EB D
  

n  

MSE ABias MSE ABias 
0.5574578 1.0822170 0.4406176 0.9672856 15 
0.5568831 1.0816249 0.3887529 0.9104329 
0.5452629 1.0702501 0.3402190 0.8535802 
0.3103592 0.8032981 0.2429184 0.7154120 25 
0.3097365 0.8024321 0.2118770 0.6698015 
0.3003825 0.7901710 0.1830155 0.6241911 
0.1815054 0.6098057 0.1405991 0.5412964 35 
0.1808260 0.6085620 0.1209274 0.5035564 
0.1730674 0.5952779 0.1027816 0.4658163 
0.1039787 0.4574452 0.0797400 0.4050512 50 
0.1032255 0.4555941 0.0673291 0.3736314 
0.0967866 0.4410254 0.0560003 0.3422116 
0.0629663 0.3512663 0.0477616 0.3104372 70 
0.0621311 0.3485943 0.0394097 0.2833708 
0.0566357 0.3326605 0.0318851 0.2563044 
0.0307656 0.2381894 0.0228854 0.2103298 100 
0.0298118 0.2337885 0.0179989 0.9672856 
0.0254559 0.2159957 0.0137170 0.9104329 

 

7 Conclusion Remarks 
 
The E-Bayesian and hierarchical Bayesian estimates of the scale parameter of IWD are computed based on 
DGOS. The results are specialized to the lower record values. It has been noticed, from Tables 1-4, that the 
ABias and MSE of the resulting estimates decreses as the sample size increases. Numerical computations 
showed that the E-Bayesian estimates have smaller ABias and MSE than the hierarchical Bayesian estimates 
based on various loss functions and different sample sizes. Furthermore, in comparing the E-Bayesian 
estimates under different loss functions, we can deduct that the E-Bayesian estimates based on ELF are the 
most efficient whearse the E-Bayesian estimates based on BSELF are the least efficient in all cases. Finally, 
this work is showed that E-Bayesian criteria can provide more efficient estimates than the hierarchical 
Bayesian approach under DGOS. 
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Appendix 1 
 

Proof of Lemma 1. 
 
(i) From Eqs. (22), (23) and (24), we get 
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According to Eqs.(A.1) and (A.2), we have  
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ˆ ˆ ˆ ˆ 0
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That is 
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ˆ ˆ ˆ
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(ii) From Eqs. (A.1) and (A.2), we get 
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That is 1 2 3
ˆ ˆ ˆlim lim lim
EBB EBB EBBH H H
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Proof of Lemma 2. 
 
(i) From Eqs. (30), (31) and (32), we get 
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According to Eqs.(A.2) and (A.4), we have  
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That is 
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ˆ ˆ ˆ
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(ii) From Eqs. (A.3) and (A.4), we get 
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That is 1 2 3
ˆ ˆ ˆlim lim limEBP EBP EBPH H H
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Proof of Lemma 3. 
 
(i) From Eqs. (35), (36) and (37), we obtain  
 

   
2 3 1 2

2ˆ ˆ ˆ ˆ 1 ln 1 2
EBE EBE EBE EBE

n H c

c c H
   

      
            

      
.                                                  (A.6) 

 
According to Eqs.(A.2) and (A.6), we have  
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(ii) From Eqs. (A.3) and (A.6), we get 
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That is 1 2 3
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Proof of Lemma 4. 
 
(i) FromEqs. (40), (41) and (42) that 
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According to Eqs.(A.2) and (A.8), we have 
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That is 
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(ii) From Eqs. (A.3) and (A.8), we get 
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Appendix 2 
 

Proof of Lemma 5. 
  

Since, ( )a c a , 
2

1

( )na H 
 are continuous on (0, )c , based on the extended case of mean value theorem for 

definite integrals [when 0 , ( ) 0a c a c a    ], there is as least one number 
1

(0, )a c such that 
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Similarly, there is as least one number 
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By substitution from Eqs.(B.1) and (B.2) in Eq. (49), we get 
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By taking the limit as H tends to  for both sides of Eq. (B.3), we obtain 
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According to Eqs.(A.3) and (B.4), we can deduct that 
 

1 1
ˆ ˆlim limEBB HBBH H
 

 
 . 
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 are continuous on (0, ),c  according to the extended case of mean value theorem for 
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Similarly, there is as least one number 
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(0, )a c  such that 

 
2

1 1 1
0 0

2 2

1

( ) ( ) 2( )

c c

n n n

ada c
ada

a H a H a H  
 

    .                                                                        (B.6) 

 
By substitution from Eqs.(B.5) and (B.6) in Eq. (50), we get 
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By taking the limit as H tends to   for both sides of Eq. (B.7), we obtain 
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According to Eqs.(A.3) and (B.8), we can deduct that 
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 are continuous on (0, )c , based on the extended case of mean value theorem 

for definite integrals (when 0 a c  ), there is as least one number 
1 (0, )a c  such that 

 
2 2

2

2 2 2
0 0

1 1

1 3

( ) ( ) 3( )

c c

n n n

a da c
a da

a H a H a H  
 

    .                                                                      (B.9) 

 

Similarly, there is as least one number 
2 (0, )a c  such that 
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By substitution from Eqs.(B.9) and (B.10) in Eq. (51), we get 
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By taking the limit as H tends to   for both sides of Eq. (B.11), we obtain 
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According to Eqs. (A.3) and (B.12), we can deduct that 
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Proof of  Lemma 6. 
 
By using similar steps in lemma (5), we can get 
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By substitution from Eqs.(B.2) and (B.12) in Eq. (55), we get 
 

1

2

1 2

1 1

( 1)( 2)ˆ
( )

n

HBP

a Hn n

a H a H




    
    

    
.                                                                                       (B.14) 

 
By taking the limit as H tends to   for both sides of Eq. (B.14), we obtain 
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According to Eqs.(A.5) and (B.15), we can deduct that 
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Similarly, we can obtain 
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Proof of  Lemma 7. 
 
By using similar steps in lemma (5), we can get 
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By substitution from Eqs.(B.16) and (B.17) in Eq. (61), we get 
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By taking the limit as H tends to   for both sides of Eq. (B.18), we obtain 
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According toEqs.(A.7) and (B.19), we can deduct that 
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Similarly, we can obtain 
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Proof of  Lemma 8. 
 
Bysubsitituting from Eqs. (B.1) and (B.13) in Eq. (67), we get 
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By taking the limit as H tends to   for both sides of Eq. (B.20), we obtain 
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According to Eqs.(A.9) and (B.21), we can deduct that 
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Similarly, we can obtain 
 

ˆ ˆlim lim ( 2,3)EBDi HBdiH H
i 

 
  . 

_______________________________________________________________________________________ 
© 2017 Reyad et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/19738 


