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Reviewers:
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Abstract

A discrete semi-Markov risk model with dividends and stochastic premiums is investigated. We
derive recursive equations for the expected penalty function by using the technique of probability
generating function. Finally, a numerical example is given to illustrate the applicability of the
results obtained.
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1 Introduction

The classical discrete time semi-Markov risk model is first introduced by Reinhard and Snoussi
[1, 2], and defined as follows: Assume that (Jn, n ∈ N) is a homogeneous, irreducible and aperiodic
Markov chain with finite state space M = {1, . . . ,m} (m ∈ N+), which influences the distribution
of the claims in each period. The one-step transition probability matrix P = (pij)i,j∈M is defined
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as follows:
pij = P(Jn = j|Jn−1 = i, Jk, k ≤ n− 1),

and the unique stationary distribution is π = (π1, . . . , πm). The surplus process Zt is described as:

Zt = Zt−1 + 1− Yt, t ∈ N+, (1.1)

where Yt denotes the total amount of claims for the t-th period and the premium for each period is
1. Assume that {Yn, n ∈ N+} is a sequence of non-negative integer random variables, conditionally
independent given the Markov chain (Jn, n ∈ N). Suppose that (Jt, Yt) depends on {Jk, Xk; k ≤
t− 1} only through Jt−1. Let

gij(l) = P(Yt = l, Jt = j|Jt−1 = i, Jk, Yk, k ≤ t− 1), l ∈ N, (1.2)

and

µij =

∞∑
k=0

kgij(k) <∞, µi =

m∑
j=1

µij , i ∈M.

For the discrete time semi-Markov risk model (1.1), Reinhard and Snoussi [1][2] derived recursive
formula for the distribution of the surplus just prior to ruin and that of the deficit at ruin with some
restrictions imposed on the total claim size. Chen et al. [3][4] relaxed the restriction of Reinhard
and Snoussi and derived recursive formula for computing the expected discounted dividends and
survival probabilities. Recently, Yuen et al. [5] further incorporated randomized dividends into risk
model (1.1) and investigated the discounted Gerber-Shiu penalty function. Dividend strategies for
insurance risk models were first proposed by De Finetti [6] to reflect more realistically the surplus
cash flows in an insurance portfolio. Barrier strategies for the classical compound Poisson risk
model have been studied extensively in the literature, see lin et al. [7] and the references therein.
Randomized dividend strategies were proposed by Tan and Yang [8] for a compound binomial model,
in which the insurer will pay a dividend of 1 with a probability in each time period if the surplus is
greater than or equal to a non-negative integer at the beginning of the period. See Landriault [9],
He and Yang [10], and Yuen et al. [11] for some generalizations.

In the present paper we show that the technique used in Yuen et al. [5] can be further generalized
to the case with stochastic premiums. The motivation for the stochastic premiums is that the
insurance company may have lump sums of income. To the best of our knowledge, Boucherie et al.
[12] first added a compound Poisson process with positive jumps to the classical Cramér-Lundberg
risk model to describe the stochastic income. Similar topics were discussed by many authors, see
[13][14][15][16][17] for more details. More precisely, we consider the following surplus process

Ut = u+

t∑
i=1

ζi −
t∑

i=1

Yi −
t∑

i=1

γi1(ui−1≥x), t ∈ N, (1.3)

where the threshold value x ∈ N, claim sizes {Yi, i ∈ N+} depend on the Markov chain (Jn, n ∈ N)
through the relationship (1.2). {ζi, i ∈ N} and {γi, i ∈ N} are two i.i.d. Bernoulli sequences with
P (ζi = 1) = p = 1− q > 0 and P (γi = 0) = α > 0 respectively.

The ruin time for risk model (1.3) is defined as τ = inf{t ∈ N : Ut < 0} with τ = ∞ if ruin does
not occur. Then the Gerber-Shiu discounted free penalty function can be defined as

mi(u) = E(ω(Uτ− , |Uτ |)1(τ<∞)|U0 = u, J0 = i), i ∈M,u ∈ N, (1.4)

where ω(x, y) is a non-negative bounded function. Obviously, when ω(x, y) ≡ 1, equation (1.4)
reduces to be the ruin probability ψi(u) = P (τ < ∞|U0 = u, J0 = i), the corresponding survival
probability is denoted by ϕi(u) = 1 − ψi(u). To ensure that ruin will not almost surely occur, we
assume positive safety load condition

∑m
i=1 πiµi < p+ α− 1 = α− q always holds.
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The rest of the paper is structured as follows. In section 2, we analyze the recursive equations
satisfied by the expected discounted free penalty function. Finally, numerical illustrations are given
in Section 3.

2 Recursive Equations for Expected Discounted Free
Penalty Function

In this section, we derive recursive equations satisfied by mi(u) using the technique proposed in [5]
with some modifications. We only consider the special case ofm = 2. By considering the occurrence
(or not) of the premium income and claims in the next period, for 0 ≤ u < x, the total probability
formula implies that

mi(u) = p[

2∑
j=1

u+1∑
k=0

gij(k)mj(u+ 1− k) + ξi(u)] + q[

2∑
j=1

u∑
k=0

gij(k)mj(u− k) + ηi(u)], (2.1)

when u ≥ x,

mi(u) = α{p[
2∑

j=1

u+1∑
k=0

gij(k)mj(u+ 1− k) + ξi(u)] + q[

2∑
j=1

u∑
k=0

gij(k)mj(u− k) + ηi(u)]}

+ (1− α){p[
2∑

j=1

u∑
k=0

gij(k)mj(u− k) + ηi(u)] + q[

2∑
j=1

u−1∑
k=0

gij(k)mj(u− 1− k) + ζi(u)]},

(2.2)

where

gi(k) =

2∑
j=1

gij(k), ξi(u) =

∞∑
k=u+2

gi(k)ω(u+ 1, k − u− 1),

ηi(u) =

∞∑
k=u+1

gi(k)ω(u, k − u), ζi(u) =

∞∑
k=u

gi(k)ω(u− 1, k − u+ 1), i = 1, 2.

Let m̃i(s) and g̃ij(s) be the probability generating function of mi(u) and gij(u). Multiplying both
sides of the equation (2.1)(2.2) and summing over u from 0 to ∞, after some algebras we have

sm̃i(s) = [α+ (1− α)s][p+ qs]
2∑

j=1

g̃ij(s)m̃j(s) + αspξ̃i(s) + [αsq + (1− α)sp]η̃i(s)

+ (1− α)sqζ̃i(s)− αp
2∑

j=1

gij(0)mj(0) + (1− α)

x−1∑
u=0

Ni(u)s
u+1,

where

Ni(u) = p

2∑
j=1

u+1∑
k=0

gij(k)mj(m+ 1− k) + (q − p)

2∑
j=1

u∑
k=0

gij(k)mj(u− k) + pξi(u)

+ (q − p)ηi(u)− qζi(u)− q

2∑
j=1

u−1∑
k=0

gij(k)mj(u− 1− k), u = 0, 1, 2, · · · , x− 1.

For i = 1, 2, let

A(α, s) = α+ (1− α)s, ei =

2∑
j=1

gij(0)mj(0), Mi(s) =

x−1∑
u=0

Ni(u)s
u+1,
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Hi(s) = αpei − αspξ̃i(s)− (1− α)[spη̃i(s) +Mi(s)]− αsqη̃i(s)− (1− α)sqζ̃i(s).

Then we have{
[(p+ qs)A(α, s)g̃11(s)− s]m̃1(s) + (p+ qs)A(α, s)g̃12(s)m̃2(s) = H1(s),

(p+ qs)A(α, s)g̃21(s)m̃1(s) + [(p+ qs)A(α, s)g̃22(s)− s]m̃2(s) = H2(s).
(2.3)

From (2.3) we get

{[(p+ qs)A(α, s)g̃11(s)− s][(p+ qs)A(α, s)g̃22(s)− s]− (p+ qs)2A2(α, s)g̃12(s)g̃21(s)}m̃1(s)

= H1(s)[(p+ qs)A(α, s)g̃22(s)− s]−H2(s)(p+ qs)A(α, s)g̃12(s).

(2.4)

For notational convenience, we define

hi(0) = αpei, gij(0) = αpgij(0), gij(1) = αpgij(1) + (1− α)pgij(0) + αqgij(0), i ̸= j,

gii(1) = αpgii(1) + (1− α)pgii(0) + αqgii(0)− 1,

gij(k) = αpgij(k) + αqgij(k − 1) + (1− α)pgij(k − 1) + (1− α)qgij(k − 2), k ∈ N \ {0, 1},
hi(k) = −αpξi(k − 1)− (1− α)(pηi(k − 1) +Ni(k − 1))− αqηi(k − 1)− (1− α)qζi(k − 1),

k = 1, 2, · · · , x,
hi(k) = −αpξi(k − 1)− (1− α)(pηi(k − 1)− αqηi(k − 1)− (1− α)qζi(k − 1),

k = x+ 1, x+ 2, · · · ,

fk =

k∑
n=0

[g11(n)g22(k − n)− g21(n)g12(k − n)],

g
(1)
k =

k∑
n=0

m1(n)fk−n, A
(1)
k =

k∑
n=0

[h1(n)g22(k − n)− h2(n)g12(k − n)], k ∈ N.

Let g̃(1)(s), f̃(s), and Ã(1)(s) be the generating functions of g
(1)
k , fk, and A

(1)
k respectively. From

(2.4) we get

g̃(1)(s) = f̃(s)m̃1(s) = Ã(1)(s). (2.5)

Inverting the equation (2.5) gives

k∑
n=0

m1(n)fk−n = A
(1)
k , k ∈ N. (2.6)

Similarly, we have
k∑

n=0

m2(n)fk−n = A
(2)
k , k ∈ N. (2.7)

Theorem 1. For i = 1, 2 and k ∈ N+, the ruin probability satisfies the recursive formula as follows

mi(k) =

{
1
f0
[A

(i)
k −

∑k−1
n=0mi(n)fk−n], if f0 ̸= 0,

1
f1
[A

(i)
k+1 −

∑k−1
n=0mi(n)fk+1−n], if f0 = 0, f1 ̸= 0.

(2.8)

Proof. From (2.6) and (2.7), we only need to show that the safty load condition will not hold for
f0 = f1 = 0. Note that

f1 = αpg11(0)[αpg22(1) + (1− α)pg22(0) + αqg22(0)− 1]− αpg21(0)[αpg12(1) + (1− α)pg12(0)

+ αqg12(0)] + αpg22(0)[αpg11(1) + (1− α)pg11(0) + αqg11(0)− 1]− αpg12(0)[αpg21(1)

+ (1− α)pg21(0) + αqg21(0)] ≤ 0.
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If f1 = 0, then g11(0) = g22(0) = 0 and

αpg21(0)[αpg12(1) + (1− α)pg12(0) + αqg12(0)] = 0, (2.9)

αpg12(0)[αpg21(1) + (1− α)pg21(0) + αqg21(0)] = 0. (2.10)

From f0 = α2p2(g11(0)g22(0) − g21(0)g12(0)) = 0, we know g21(0) = g12(0) = 0. Consider two
situations

(i) g12(0) = 0 but g21(0) ̸= 0. From (2.9), we know g12(1) = 0, and get µ1 ≥ 1 + p12,
µ2 ≥ 1− g21(0), but the only initial distribution is π = (π1, π2) = ( p21

p21+p12
, p12
p21+p12

). Therefore,

π1µ1 + π2µ2 ≥ p21
p21 + p12

(1 + p12) +
p12

p21 + p12
(1− g21(0)) ≥ 1.

(ii) g21(0) = 0 but g12(0) ̸= 0. From (2.10), we know g21(1) = 0. We have µ1 ≥ 1− g12(0), but
µ2 ≥ 2p21 + p22 = 1 + p21. So we have

π1µ1 + π2µ2 ≥ p21(1− g12(0)) + p12(1 + p21)

p21 + p12
≥ 1.

This complete the proof of theorem 1. 2

To apply the recursive formula (2.8), we need 2(x+1) equations to solve the problem of the values of
mi(0),mi(1), · · · ,mi(x), i = 1, 2. Obviously, let u = 0, 1, · · · , x−1 in (2.1), we can get 2x equations.
Now we aim to find another two equations. In what follows, we borrow the same symbols as Yuen
et al. [5]. For u, z ∈ N, y ∈ N+ and i, j = 1, 2, define

fij(u, z, y) = P(τ <∞, Jτ = j, Uτ− = z, |Uτ | = y|U0 = u, J0 = i),

mij(u) = E(ω(Uτ− , |Uτ |)1(τ<∞,Jτ=j)|U0 = u, J0 = i).

From the same method in [5], we have

mi(x) =

2∑
k=1

∞∑
z=0

x∑
y=1

fik(0, z, y)mk(x− y) +

∞∑
z=0

∞∑
y=x+1

fi(0, z, y)ω(x+ z, y − x), i, j = 1, 2, (2.11)

where fi(0, z, y) =
∑2

j=1 fij(0, z, y). Since mij(0) = fij(0, z, y), we should give the values of mij(0)
under the condition of x = 0.

2.1 The first equation between m1(0) and m2(0)

Now we assume x = 0 and denote by

ξil(u) =

∞∑
k=u+2

gil(k)ω(u+ 1, k − u− 1), ηil(u) =

∞∑
k=u+1

gil(k)ω(u, k − u),

ζil(u) =

∞∑
k=u

gil(k)ω(u− 1, k − u+ 1), i, l = 1, 2,

then equation (2.2) can be replaced by

mil(u) = α{p[
2∑

j=1

u+1∑
k=0

gij(k)mjl(u+ 1− k) + ξil(u)] + q[

2∑
j=1

u∑
k=0

gij(k)mjl(u− k) + ηil(u)]}

+ (1− α){p[
2∑

j=1

u∑
k=0

gij(k)mjl(u− k) + ηil(u)] + q[

2∑
j=1

u−1∑
k=0

gij(k)mjl(u− 1− k) + ζil(u)]}.
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It is easy to see that

lim
s→1

f̃(s) = lim
s→1

{[(p+ qs)A(α, s)g̃11(s)− s][(p+ qs)A(α, s)g̃22(s)− s]

− (p+ qs)2A2(α, s)g̃12(s)g̃21(s)} = 0.

Therefore, if lims→1 m̃1(u) =
∑∞

u=0m1(u) <∞, from (2.5) we get

lim
s→1

Ã(1)(s) = −p21[αpe1 − αp
∞∑

u=0

ξ1(u)− (1− α)p
∞∑

u=0

η1(u)− αq
∞∑

u=0

η1(u)− (1− α)q
∞∑

u=1

ζ1(u)]

− p12[αpe2 − αp

∞∑
u=0

ξ2(u)− (1− α)p

∞∑
u=0

η2(u)− αq

∞∑
u=0

η2(u)− (1− α)q

∞∑
u=1

ζ2(u)] = 0,

which is equivalent to

pm1(0)(g11(0)p21 + g21(0)p12) + pm2(0)(g12(0)p21 + g22(0)p12)

= pp21

∞∑
u=0

ξ1(u) + pp12

∞∑
u=0

ξ2(u) + qp21

∞∑
u=0

η1(u) + qp12

∞∑
u=0

η2(u)

+
(1− α)

α
(pp21

∞∑
u=0

η1(u) + pp12

∞∑
u=0

η2(u) + qp21

∞∑
u=1

ζ1(u) + qp12

∞∑
u=1

ζ2(u)).

(2.12)

Now we check that (2.12) still holds in the case of
∑∞

u=0m1(u) = ∞. Let ϕ̃i(s) be the generating
function of ϕi(u) for i = 1, 2. By imitating the proof of Proposition 2 in [5], one can easily obtain
that

lim
s→1

f̃(s)ϕ̃i(s) = −f̃ ′(1) <∞. (2.13)

Let ψ̃1(s) represent the generating function of ψ1(u). Then equation (2.13) leads to

lim
s→1

f̃(s)ψ̃1(s) = lim
s→1

f̃(s)(
1

1− s
− ϕ̃1(s)) = lim

s→1

f̃(s)

1− s
− lim

s→1
f̃(s)ϕ̃1(s) = f̃ ′(1)− f̃ ′(1) = 0,

which further implies that
lim
s→1

f̃(s)m̃1(s) = lim
s→1

f̃(s)ψ̃1(s) = 0.

From (2.5), we obtain lims→1 Ã
(1)(s) = 0, and this shows that equation (2.12) is still true.

2.2 The second equation between m1(0) and m2(0)

Note that f0 = α2p2[g11(0)g22(0)−g12(0)g21(0)]. We first consider the spcial case of f0 = 0. Denote
by

K1 = α2p2[g11(1)g22(0)− g12(0)g21(1)]− αpg22(0) ≤ 0,

K2 = α2p2[g22(0)g12(1)− g12(0)g22(1)] + αpg12(0) ≥ 0,

in terms of equation (2.6), we have

K1m1(0) +K2m2(0) = α2p2(g12(0)ξ2(0)− g22(0)ξ1(0)) + (α(1− α)p2

+ α2pq)(g12(0)η2(0)− g22(0)η1(0)) + α(1− α)pq(g12(0)ζ2(0)− g22(0)ζ1(0)).
(2.14)

Since K1 = K2 = 0 holds if only if g12(0) = g22(0) = 0, and this gives e1 = g11(0)m1(0), e2 =
g21(0)m1(0). Therefore, we have

f1m2(0) = A
(2)
1 = [α2p2(g21(0)g11(1)− g11(0)g21(1))− αpg21(0)]m1(0)

+ α2p2(g21(0)ξ1(0)− g11(0)ξ2(0)) + α(1− α)p2(g21(0)η1(0)

− g11(0)η2(0)) + α2pq(g21(0)η1(0)− g11(0)η2(0)).

(2.15)

6
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Seondly, we consider the case of f0 > 0. Some rearrangements leads to

f̃ ′(s) = {qA(α, s)g̃11(s) + (p+ qs)[(1− α)g̃11(s)A(α, s)g̃
′
11(s)]− 1}[(p+ qs)A(α, s)g̃22(s)− s]

+ [(p+ qs)A(α, s)g̃11(s)− s]{qA(α, s)g̃22(s) + (p+ qs)[(1− α)g̃22(s) +A(α, s)g̃′22(s)]− 1}

− 2q(p+ qs)A2(α, s)g̃12(s)g̃21(s)− (p+ qs)2[2(1− α)A(α, s)g̃12(s)g̃21(s)

+A2(α, s)(g̃′12(s)g̃21(s) + g̃12(s)g̃
′
21(s))],

which means that

f̃ ′(1) = −p21[qp11 + (1− α)p11 + µ11 − 1]− p12[qp22 + (1− α)p22 + µ22 − 1]

− 2qp12p21 − 2(1− α)p12p21 − p21µ12 − p12µ21

= α(p12 + p21)− (p12µ1 + p21µ2)− q(p12 + p21) > 0.

Note that f̃(1) = 0, there exists a ρ ∈ (0, 1) such that f̃(ρ) = 0, i.e., Ã(1)(ρ) = 0. Equivalently, we
have

p[(p+ qρ)A(α, ρ)(g11(0)g̃22(ρ)− g21(0)g̃12(ρ))− ρg11(0)]m1(0)

+ p[(p+ qρ)A(α, ρ)(g12(0)g̃22(ρ)− g22(0)g̃12(ρ))− ρg12(0)]m2(0)

= ρp{[ξ̃1(ρ) +
1− α

α
η̃1(ρ)][(p+ qρ)A(α, ρ)g̃22(ρ)− ρ]

− [ξ̃2(ρ)−
1− α

α
η̃2(ρ)](p+ qρ)A(α, ρ)g̃12(ρ)}

+ ρq{[η̃1(ρ) +
1− α

α
ζ̃1(ρ)][(p+ qρ)A(α, ρ)g̃22(ρ)− ρ]

− [η̃2(ρ) +
1− α

α
ζ̃2(ρ)](p+ qρ)A(α, ρ)g̃12(ρ)}.

(2.16)

Finally, consider the case of f0 < 0, then f̃(0) = f0 = 0. On the other hand,

f̃(−1) = [(2p− 1)(2α− 1)g̃11(−1) + 1][(2p− 1)(2α− 1)g̃22(−1) + 1]

− (2p− 1)2(2α− 1)2g̃21(−1)g̃12(−1) > (1− g̃11(1))(1− g̃22(1))− g̃21(1)g̃12(1)

= (1− p11)(1− p22)− p21p12 = 0, ∀α ∈ (0, 1], ∀p ∈ (0, 1],

which implies that f̃(ρ) = 0 holds for some ρ ∈ (−1, 0), that is, Ã(1)(ρ) = 0. Then (2.16) still holds.

3 Numerical Analysis

We remark that the risk model in [5] can be covered by letting p = 1 in the model proposed in the
present paper. To give a comparision, we cite the numerical example in [5]. The distribution of
gij(k) is as follows

7
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Let α = 0.8, 0.85, 0.9, x = 0, p = 0.95, q = 0.05. Direct calculation gives

p12 =
1

8
, p21 =

2

3
, µ1 =

1

2
, µ2 = 2.

Note that f0 = 0, g12(0) = g22(0) = 0. According to (2.12) and (2.15), the values of {fij(0, z, y), i, j =
1, 2} can be obtained with µ1 = 1

2
and x = 0.

f1j(0, z, y) =
12

5
p[
2

3
g1j(z + y) +

1

8
g2j(z + y)](1z≥1 +

1− α

α
) +

24

5
q[
2

3
g1j(z + y) +

1

8
g2j(z + y)],

f2j(0, z, y) =
6αp

6− αp
g2j(z + y)1(z=1) +

6(1− α)p

6− αp
g2j(z + y)1(z=0) +

6αq

6− αp
g2j(z + y)1(z=0).

Table 2 to Table 5 are the values of fij(0, z, y), i, j = 1, 2 and Table 6 is the value of ψi(u).
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Table 6 describes the behavior of ψi(u), i = 1, 2 with respect to initial surplus u for fixed p. As
is expected, ψi(u) decreases as the initial surplus u increases. On the other hand, for fixed u,
ψi(u) always decreases as the value of α increases. Compare with Table 6 in [5], we see that the
corresponding values of ψi(u) become larger for the same initial u. This is, heuristically, due to the
fact that the insurer receives one unit of premiums with probability p < 1. This illustrates the fact
that the randomness of premiums has a significant effect on the ruin probabilities.

4 Conclusions

In this paper,we mainly investigate the discrete semi-Markov risk model with dividends and stochastic
premiums. By using the technique of probability generating function, recursive equations for the
expected penalty function are derived.
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