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ABSTRACT

If two non isomorphic graphs are Tutte-equivalent then they are chromatic-equivalent. The opposite
is not always true. We give a case of chromatic-equivalence implying Tutte-equivalence.
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1 INTRODUCTION

There are many polynomials associated with a
graph G. Polynomials play an important role
in the study of graphs as they encode various
information about a graph. Two of the most
studied polynomials for graphs are the Tutte and
the chromatic polynomials.

The chromatic polynomial of a graph G, P (G;λ),
was originally defined by Birkhoff [1], in 1912.
Thereafter, Read [2], gave an introduction to the

theory of chromatic polynomials which aroused a
lot of interest. This is one of the widely studied
polynomials in graph theory: we refer to [3], for
further details.

Two graphs G and H are χ-equivalent if and only
if P (G;λ) = P (H;λ). We denote χ-equivalence
of G and H by G

χ∼ H. It is obvious that if G is a
family of graphs, then G can be partitioned into
χ-equivalent classes. The χ-equivalence class
determined by a graph G will be denoted by [G].
A graph G is χ-unique if and only if [G] = {G}.
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In his introductory paper [2], Read posed a
few questions which initiated the research in
chromatic polynomials. One of the questions
he posed is, what is a necessary and sufficient
condition for two non-isomorphic graphs to be
χ-equivalent? In particular, he gave a less trivial
pair of non-isomorphic graphs G1 and G2 shown
in Fig. 1 with the same chromatic polynomial.

In response to this question, a lot of literature has
been gathered on construction of χ-equivalent
graphs and χ-unique graphs, for recent research,
see, [4], [5], [6], and for a summary and directions
of the literature collected, we refer to [3]. Read’s
question is still not fully settled. In addition, this
paper was motivated by the suggestion made
by Wilf [7], of a further study on the relationship
between closed subsets and the computation of
the chromatic polynomial.

In 1954, Tutte introduced a two variable
polynomial for a graph and called it the
dichromate of the graph. This polynomial is

now called the Tutte polynomial of a graph
and is denoted by T (G;x, y). This polynomial
is of central importance in graph theory as it
carries a lot of information about a graph. In
addition the widely studied chromatic polynomial
is simply an evaluation of the Tutte polynomial
(−1)|V (G)|−ω(G)λCT (G; 1 − λ, 0) where ω(G) is
the number of connected components of G.
Two graphs G and H are T -equivalent if and
only if T (G;x, y) = T (H;x, y). We denote T -
equivalence of G and H by G

T∼ H. A graph G
is T -unique if every graph H that is T -equivalent
to G is isomorphic to G. We refer the reader to
[8], [9], [10], for some literature on T -equivalence
and T -unique.

It is obvious that if two non isomorphic graphs
are T -equivalent then they are χ-equivalent since
χ(G;λ) = (−1)|V (G)|−ω(G)T (G; 1 − λ, 0). The
opposite is not always true. For example the pair
of non-isomorphic graphs G1 and G2 shown in
Fig. 1 share the same chromatic polynomial but
has the following Tutte polynomials:

T (G1;x, y) = 18xy + 18xy2 + 4xy3 + 18x2y + 2x2y2 + 4x3y + 4y + 11y2 + 11y3 + 5y4 + y5

+ x5 + 5x4 + 11x3 + 11x2 + 4x

T (G2;x, y) = 16xy + 15xy2 + 5xy3 + xy4 + 16x2y + 4x2y2 + 4x3y + 4y + 9y2 + 7y3 + 3y4 + y5

+ x5 + 5x4 + 11x3 + 11x2 + 4x

Fig. 1

In this paper, we begin by reviewing the theory of coboundary polynomials and k-defect polynomials
relevant to this paper. Then we give the relationship between closed subsets and the computation
of the chromatic polynomial. Finally, we state and prove the main result of this paper and give an
example of a set of non-isomorphic graphs which satisfy the main theorem.
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2 THE THEORY OF CO-
BOUNDARY POLYNOMIALS

A coloring of a graph G is an assignment of
colors to each vertex of G. A coloring of G
in which adjacent vertices are not allowed to
have the same color is called a proper coloring.
The chromatic polynomial of a graph G, P (G;λ),
expresses the number of different proper coloring
of G with at most λ colors. Moreover, the
characteristic polynomial of a graph G, χ(G;λ) =
P (G;λ)

λω(G) where ω(G) is the number of components
of G. A coloring of G in which vertices are
allowed to be adjacent to other vertices with
the same color as themselves is called a bad
coloring. An edge is called bad if it joins two
vertices of the same color in a bad coloring. The
k-defect polynomial, ϕk(G;λ), counts the number
of ways of coloring G with at most λ colors
and having exactly k bad edges. If ϕ0(G;λ)
counts the number of ways of colouring G with
λ colours and having exactly 0 bad edges, then
P (G;λ) = ϕ0(G;λ). For further details of the
theory of k-defect polynomials: we refer the
reader to [11, 12]. It is clear that if G is an
edgeless graph, then χ(G;λ) = 1.

Recall that the rank of a graph G is r(G) =
|V | − ω(G). The coboundary polynomial of a
graph G, with an edge set E, is a polynomial in
two independent variables λ and s, denoted by
B(G;λ, s) and is defined as

B(G;λ, s) =
∑
X⊆E

(s− 1)|X|λr(G)−r(X).

From this definition it follows that B(G;λ, 0) =
χ(G;λ). It is indicated in [11] that the coboundary
polynomial of a graph G is equal to the
coboundary polynomial of its cycle matroid
M(G), thus B(G;λ, s) = B(M(G);λ, s). Thus
the theory of coboundary polynomials for
matroids generalizes for graphs.

The coboundary polynomial of a graph G
was defined and studied by Crapo [13], as a
generating function in s given by

B(G;λ, s) =

|E|∑
k=0

skϕk(G;λ) (2.1)

where ϕk(G;λ) is a polynomial in λ called the

k-defect polynomial of a graph. The following
proposition summarizes some of the well known
relationships of the coboundary polynomial, Tutte
polynomial and the chromatic polynomial of
graphs relevant to this paper.

Proposition 2.1. Let G be a graph of rank-
r, B(G;λ, s) its coboundary polynomial and
T (G;x, y) its Tutte polynomial, then

B(G;λ, s) = (s− 1)rT (G;
s+ λ− 1

s− 1
, s)

or vice versa

T (G;x, y) =
1

(y − 1)r
B(G; (x− 1)(y − 1), y).

Corollary 2.1. Let G be a rank-r graph. Then

χ(G;λ) = (−1)rT (G; 1− λ, 0).

Thus by generalizing the recursion for
characteristic polynomial of a graph, see [11],
the coboundary polynomial can be computed
recursively as given in the next proposition.

Proposition 2.2. Let G be a graph and let e ∈ E.

[(Bi)] If e is neither a loop or an isthmus of
G, then

B(G;λ, s) = B(G\e;λ, s)+(s−1)B(G/e;λ, s).

[(Bii)] If e is a loop, then

B(G;λ, s) = sB(G\e;λ, s).

[(Biii)] If e is an isthmus, then

B(G;λ, s) = (s+ λ− 1)B(G/e;λ, s).

The following proposition is derived from
Equation 2.1, see [11].

Proposition 2.3. Let G be a graph and L(G) the
set of all closed sets of G. Then

B(G;λ, s) =
∑

X∈L(G)

s|X|χ(G/X;λ).

The following proposition is an immediate
consequence of Equation 2.1 and
Proposition 2.3.

Proposition 2.4. Let G be a graph. Then

ϕk(G;λ) =
∑

X∈L(G),|X|=k

χ(G/X;λ).
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3 A CONDITION FOR χ-
EQUIVALENCE

In this section we give the computation of the
chromatic polynomial in terms of closed sets,
state and prove the main result of this paper. In
addition we conclude by giving an example of
graphs which satisfy the main theorem. We need
some lemmas and propositions before stating
and proving the main result.

Lemma 3.1. Let G be a rank-r graph. Then
B(G;λ, 1) = λr.

Proof: This is clear by applying the deletion and
contraction method. Note that all the minors
obtained by contracting contribute a zero. So we
only need to delete one element at a time and
apply Proposition 2.2(iii) once we have a coloop
to get the result.

Lemma 3.2. Let G be a rank-r graph. Then

χ(G,λ) = λr −
|E|∑
k=1

ϕk(G;λ).

Proof: Recall that χ(G;λ) = ϕ0(G;λ) from
the definition. By applying Equation 2.1 we get

B(G;λ, 1) =
∑|E|

k=0 ϕk(G;λ). Hence

ϕ0(G;λ) = B(G;λ, 1)−
|E|∑
k=1

ϕk(G;λ)

= λr −
|E|∑
1

ϕk(G;λ) by Lemma 3.1.

The following notation is required to state the
main theorem. Let L(G) be the lattice of closed
sets of the graph G. We define the multiset of
all minors obtained by contracting closed sets of
G to be Cl(G) = {G/X, ∀X ∈ L(G)}. From this
notation it is clear that |L(G)| = |Cl(G)|. Recall
from section 1 that we denote χ-equivalence of
G and H by G

χ∼ H. Recall that two graphs G
and H are isomorphic up to parallel class if the
simplification of G is equal to the simplification of
H.

Theorem 3.1. Let G and H be rank-r graphs,
gi ∈ Cl(G) and hi ∈ Cl(H) . Then G is χ-
equivalent to H if there exist a bijection ζ from
Cl(G) to Cl(H) defined by ζ(gi) = hi if gi is
isomorphic to hi up to parallel class.

Proof: A bijection from Cl(G) to Cl(H) implies
|Cl(G)| = |Cl(H)| = q. By definition of bijection
ζ, gi is isomorphic to hi up to parallel class which
implies that gi

χ∼ hi. Since ζ is a bijection then for
each i ∈ {1, 2, · · · , q} we get χ(gi;λ) = χ(hi;λ).
Therefore

χ(G,λ) = λr −
|E|∑
k=1

ϕk(G;λ) by Lemma 3.1

= λr −
|E|∑
k=1

∑
X∈L(G),|X|=k

χ(G/X;λ) by Proposition 2.4

= λr −
q∑

i=1

χ(gi;λ)

= λr −
q∑

i=1

χ(hi;λ)

= χ(H,λ).

Hence G is χ-equivalent to H.
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We define the set of all minors obtained by
contracting closed sets of size k of G to be
Clk(G) = {G/X, ∀X ∈ L(G) such that |X| =
k}. Recall from section 1 that we denote T -
equivalence of G and H by G

T∼ H.

Theorem 3.2. Let G and H be rank-r graphs,
gik ∈ Clk(G) and hik ∈ Clk(H) where k =
{1, 2, · · · , |E|}. If G is χ-equivalent to H such that
there exist a bijection ζ from Clk(G) to Clk(H)
defined by ζ(gik ) = hik if gik is isomorphic to hik

up to parallel class then G is T -equivalent to H.

Proof: A bijection from Clk(G) to Clk(H) implies
|Clk(G)| = |Clk(H)|. Isomorphism up to parallel
class implies χ(gik ;λ) = χ(hik ;λ). Hence by
Proposition 2.4, ϕk(G;λ) = ϕk(H;λ). Therefore,
by Equation 2.1 it follows that

B(G;λ, s) = B(H;λ, s). (3.1)

Applying Proposition 2.1, and Equation 3.1 we

have

T (G;x, y) =
1

(y − 1)r
B(G; (x− 1)(y − 1), y)

=
1

(y − 1)r
B(H; (x− 1)(y − 1), y)

= T (H;x, y)

Hence G is T -equivalent to H.

The following theorem is a slight variation of
Theorem 3.2.

Theorem 3.3. Let G and H be rank-r graphs,
gik ∈ Clk(G) and hik ∈ Clk(H) where k =
{1, 2, · · · , |E|}. If G is χ-equivalent to H such that
there exist a bijection ζ from Clk(G) to Clk(H)

defined by ζ(gik) = hik if gik
χ∼ hik , then G is

T -equivalent to H.

We give an example of a pair of graphs that
satisfy Theorem 3.3.

Example 3.1. Let G and H be the graphs shown
in Fig. 2.

Fig. 2

G and H are χ-equivalent since

χ(G;λ) = λ6 − 8λ5 + 26λ4 − 43λ3 + 36λ2 − 12λ

= χ(H;λ).

G and H are T -equivalent since

T (G : x, y) = x5 + 3x4 + 4x3 + 3x2 + x+ y3 + 2y2 + y + 4xy + 5x2y + 2x3y + 3xy2

= T (H;x, y).

Now, we need to show that there exist a bijection ζ from Clk(G) to Clk(H) defined by ζ(gik) = hik if
gik

χ∼ hik . The graphs given in Fig. 3 are simplifications of some of the minors obtained by contracting
closed sets in graphs G and H. Recall that Sn, Pn and Cn is a star graph, a path graph and a cycle
graph on n vertices, respectively.
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Fig. 3

Table 1

k Clk(G) Clk(H)

1 {G1, · · · , G1︸ ︷︷ ︸
4

, G2, G2, G3, G3} {G1, · · · , G1︸ ︷︷ ︸
4

, G2, G2, G4, G4}

2 {G6, · · · , G6︸ ︷︷ ︸
9

, G5, · · · , G5︸ ︷︷ ︸
8

, C4, · · · , C4︸ ︷︷ ︸
4

, S4} {G6, · · · , G6︸ ︷︷ ︸
9

, G5, · · · , G5︸ ︷︷ ︸
8

, C4, · · · , C4︸ ︷︷ ︸
4

, S4}

3 {G6, G6, C3, · · · , C3︸ ︷︷ ︸
12

, P3, · · · , P3︸ ︷︷ ︸
8

} {G6, G6, C3, · · · , C3︸ ︷︷ ︸
12

, P3, · · · , P3︸ ︷︷ ︸
8

}

4 {P2, · · · , P2︸ ︷︷ ︸
4

, P3, · · · , P3︸ ︷︷ ︸
3

, C3, · · · , C3︸ ︷︷ ︸
8

} {P2, · · · , P2︸ ︷︷ ︸
4

, P3, · · · , P3︸ ︷︷ ︸
3

, C3, · · · , C3︸ ︷︷ ︸
8

}

5 {P2, · · · , P2︸ ︷︷ ︸
8

} {P2, · · · , P2︸ ︷︷ ︸
8

}

6 {P2, · · · , P2︸ ︷︷ ︸
8

} {P2, · · · , P2︸ ︷︷ ︸
8

}

7 {} {}
8 {K1} {K1}

Recall the notation Clk(G) = {G/X, ∀X ∈
L(G) such that |X| = k}. The table below
indicates the multisets Clk(G) and Clk(H) for
k = {1, 2, · · · , 8} for comparison. From the table,
it is clear that the multisets Clk(G) = Clk(H) for
k = {2, · · · , 8}, hence the bijection ζ is trivial. We
only need to show this bijection for k = 1.

χ(G3;λ) = (λ− 1)χ(G6;λ)

= χ(G4;λ).

Hence, there exist a bijection ζ from Cl1(G) to

Cl1(H) defined by ζ(Gi) = Hi where H1 =

G1, H2 = G2 and H3 = G4 and Gi
χ∼ Hi.

4 CONCLUSION

Note that the pair of χ-equivalent graphs G1 and
G2 given in Fig. 1 do not satisfy Theorem 3.2
or Theorem 3.3 and we have shown in the
introduction that these graphs G1 and G2 are
not T -equivalent. To conclude this paper, we
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pose the following question, what is a necessary
and sufficient condition for two non-isomorphic
χ-equivalent graphs to be T -equivalent?
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