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1. Introduction

P roblems in porous media are essential in the field of petroleum engineering, soil mechanics, power
technology, biology, material science, etc. Thus, this has attracted the attention of scientists and

mathematicians in particular, see for instance the results in [1–8] and the references cited therein for related
theory of porous-elastic materials. The basic equations describing the motion of a classical porous system are
given by {

ρϕtt − Sx = 0, in (0, L)×R+,

Jψtt − Gx −Q = 0, in (0, L)×R+,
(1)

where ϕ = ϕ(x, t) and ψ = ψ(x, t) are the displacements of solid elastic material and the volume fraction,
respectively. The physical parameters ρ and J are respectively, mass density and product of the equilibrated
inertia by the mass density. The constitutive laws S, G and Q are: stress tensor, equilibrated stress vector and
equilibrated body force, respectively. Time delays occur in systems modeling different types of phenomena in
areas such as: biosciences, medicine, physics, chemical and structural engineering. These phenomena depend
naturally on the present state and past history of the system. It is a well known fact that the presence of a delay
term in a system, which is a priori a stable system, might cause an instability in the system, see for instance, the
result of Nicaise and Pignotti [9]. In past decades, a great number of researchers have investigated the effect of
delay on the stability of various systems or wave equations (with or without memory), see for example [10–15]
and references therein. Back to system (1), we should mention that, there are very few results in literature that
studied the effect of delay on this system. With memory and time varying delay dampings, the constitutive
laws in (1) are given by 

S = kϕx + bψ,

G = δψx −
∫ t

0
g(t− s)ψx(., s)ds,

Q = −bϕx − aψ− µ1ψt − µ2ψt(., t− τ(t)),

(2)

where the constitutive physical parameters, k, b, δ, a satisfies

k > 0, δ > 0, a > 0, b2 < ka, (3)

µ1, µ2 are real constants, τ(t) > 0 is the time-dependent delay and g is a given function to be specified later.
For simplicity, we set L = 1, then substituting (2) into (1), we arrive at the following porous-viscoelastic system
with varying time dependent delay;
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

ρϕtt − kϕxx − bψx = 0, in (0, 1)×R+,

Jψtt − δψxx + bϕx + aψ +
∫ t

0 g(t− s)ψxx(x, s)ds + µ1ψt + µ2ψt(., t− τ(t)) = 0, in (0, 1)×R+,

ϕx(0, t) = ϕx(1, t) = ψ(0, t) = ψ(1, t) = 0, t ∈ R+,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1),

ψt(x, t) = f0(x, t), in (0, 1)× (−τ(0), 0).

(4)

When g = µ1 = µ2 = 0, Quintanilla [16] investigated{
ρϕtt − kϕxx − bψx = 0, in (0, 1)× (0,+∞),

Jψtt − δψxx + bϕx + aψ− γψt = 0, in (0, 1)× (0,+∞),

where µ1 = γ > 0 and showed the lack of exponential stability. However, he established a slow
non-exponential decay result. Casas and Quintanilla [17] studied

ρϕtt − kϕxx − bψx + βθx = 0, in (0, 1)× (0,+∞),

Jψtt − δψxx + bϕx + aψ−mθ + γψt = 0, in (0, 1)× (0,+∞),

cθt − κθxx + βϕxt + mψxt = 0, in (0, 1)× (0,+∞),

(5)

and improved the result in [16] (exponential stability). Soufyane et al., [18] considered (5) with viscoelastic
damping on the boundaries and proved a general decay estimate. Recently, Apalara [19] looked at{

ρϕtt − kϕxx − bψx = 0, in (0, 1)× (0,+∞),

Jψtt − δψxx + bϕx + aψ +
∫ t

0 g(t− s)ψxx(x, s)ds = 0, in (0, 1)× (0,+∞),

where the memory g satisfies g′(t) ≤ −ξ(t)g(t) and established a general decay estimate. Feng and Apalara
[20] improved the result in [19] when the relaxation function g satisfies g′(t) ≤ −ξ(t)H(g(t)).

For results in porous systems with delay damping, not much has been done in this direction. we refer
the reader to the result of Khochemane et al., [21], where they considered a porous elastic system with weak
internal damping and constant delay damping. Precisely, they studied{

ρϕtt − kϕxx − bψx = 0, in (0, 1)× (0,+∞),

Jψtt − δψxx + bϕx + aψ + α(t)g(ψt) + µ1ψt + µ2ψt(., t− τ) = 0, in (0, 1)× (0,+∞),
(6)

and proved a general decay result provided g satisfies{
c1|s| ≤ |g(s)| ≤ c2|s|, if |s| ≥ ε,

s2 + g2(s) ≤ G−1(sg(s)), if |s| ≤ ε.

Recently, Borges Filho and Santos [22] considered{
ρϕtt − kϕxx − bψx = 0, in (0, 1)× (0,+∞),

Jψtt − δψxx + bϕx + aψ + µ1ψt + µ2ψt(., t− τ(t)) = 0, in (0, 1)× (0,+∞),

and showed that the system is exponentially stable. More related results can be found in [23–27] and references
therein.

The novelty of this work is to study the stability of system (7). In fact, we show that the solution energy
has an optimal decay estimate even in the presence of time varying delay term, from which the results in [21,22]
are particular cases. To the best of our knowledge, system (7) has not been considered before in the literature.
The rest of work is organized as follows: In Section 2, we recall some preliminaries and assumptions on the
memory term. In Section 3, we state and prove several lemmas needed for establishing our main results. In
Section 4, we establish the uniform stability result and in Section 5, we give some examples in support of our
results.
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2. Problem setting and assumptions
In this work, we consider the following system:

ρϕtt − kϕxx − bψx = 0, in (0, 1)×R+,

Jψtt − δψxx + bϕx + aψ +
∫ t

0 g(t− s)ψxx(x, s)ds + µ1ψt + µ2ψt(., t− τ(t)) = 0, in (0, 1)×R+,

ϕx(0, t) = ϕx(1, t) = ψ(0, t) = ψ(1, t) = 0, t ∈ R+,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1),

ψt(x, t) = f0(x, t), in (0, 1)× (−τ(0), 0).

(7)

In addition to (3), we need the following:

Assumptions

(A1) The relaxation function g : [0,+∞)→ (0,+∞) is a C1 non-increasing function and satisfies

g(0) > 0, δ−
∫ +∞

0
g(s)ds = l > 0. (8)

(A2) There exists a C1−function M : [0,+∞) → [0,+∞), which is either linear or is a strictly increasing and
strictly convex C2 function on [0, α], α > 0, α ≤ g(0), with M(0) = M′(0) = 0, such that

g′(t) ≤ −ξ(t)M(g(t)), ∀ t ≥ 0, (9)

where ξ is a positive non-increasing differentiable function.
(A3) There exist τ0, τ1 > 0 such that

0 < τ0 ≤ τ(t) ≤ τ1, ∀ t > 0. (10)

(A4)
τ(t) ∈W2,+∞(0, T) and τ′(t) ≤ d < 1, ∀ t, T > 0. (11)

(A5) The real constants µ1 and µ2 satisfies |µ2| < µ1
√

1− d.

From (A1) and (A2), we can deduce the following:

(I) It follows from (A1) that lim
t→∞

g(t) = 0. Thus, there exists t0 ≥ 0 large enough, such that

g(t0) = α and g(t) ≤ α, ∀ t ≥ t0. (12)

(II) Since g and ξ are positive, non-increasing and continuous functions, in addition to M being a positive
continuous function, it follows that, for all t ∈ [0, t0],

0 < g(t0) ≤ g(t) ≤ g(0)

0 < ξ(t0) ≤ ξ(t) ≤ ξ(0)

}
⇒ β1 ≤ ξ(t)M(g(t)) ≤ β2

for some positive constants β1 and β2. Hence,

g′(t) ≤ −ξ(t)M(g(t)) ≤ − β1

g(0)
g(0) ≤ − β1

g(0)
g(t), ∀ t ∈ [0, t0]. (13)

(III) M has an extension M, which is a strictly increasing and strictly convex C2 function on (0, ∞). As an
example, given that M(α) = a1, M′(α) = a2 and M′′(α) = a3, then we can define M by

M(t) =
a3

2
t2 + (a2 − a3α)t +

(
a1 +

a3

2
α2 − a2α

)
, ∀ t > α. (14)

From now on, C denotes a positive constant that may change within lines or from line to line. We denote
by ‖.‖2 the usual norm in L2(0, 1) and define the following spaces:

L2
∗(0, 1) =

{
w ∈ L2(0, 1) :

∫ 1

0
w(x)dx = 0

}
, H1
∗(0, 1) = H1(0, 1) ∩ L2

∗(0, 1),
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and
H2
∗(0, 1) = H2(0, 1) ∩ H1

∗(0, 1).

Let W = (ϕ, ϕt, ψ, ψt), W0 = (ϕ0, ϕ1, ψ0, ψ1) and set H = H1
∗(0, 1)× L2

∗(0, 1)× H1
0(0, 1)× L2(0, 1), H1 =

H2
∗(0, 1) × H1

∗(0, 1) × H2(0, 1) ∩ H1
0(0, 1) × H1

0(0, 1). We have the following well-possedness result, which is
obtained by using the Classical Faedo-Galerkin method.

Theorem 1. Suppose assumptions (A1) − (A5) hold. Let W0 ∈ H and f0 ∈ H1((0, 1) × (−τ(0), 0)), then (7)
possesses a unique weak solution W ∈ C([0,+∞),H). Moreover, if W0 ∈ H1 and f0 ∈ H2((0, 1)× (−τ(0), 0)), then
the solution is more regular in the class W ∈ C([0,+∞),H1) ∩ C1([0,+∞),H).

We recall the following useful lemmas that will be applied repeatedly throughout this article.

Lemma 1. Let w ∈ L2
loc([0,+∞), L2(0, 1)), we have

∫ 1

0

(∫ t

0
g(t− s)(w(t)− w(s))ds

)2
dx ≤ (1− l)(g ◦ w)(t), (15)

and ∫ 1

0

(∫ x

0
w(y, t)dy

)2
dx ≤ ‖w(t)‖2

2, (16)

where (g ◦ w)(t) =
∫ t

0 g(t− s)‖w(t)− w(s)‖2
2ds.

Lemma 2. Let w ∈ H1
0(0, 1), then

∫ 1

0

(∫ t

0
g(t− s)(w(t)− w(s))ds

)2
dx ≤ Cp(1− l)(g ◦ w)(t), (17)

where Cp > 0 is the Poincaré’s constant and (g ◦ w)(t) =
∫ t

0 g(t− s)‖w(t)− w(s)‖2
2ds.

Lemma 3. Let (ϕ, ψ) be the solution of (7). Then, for any 0 < α < 1, we have

∫ 1

0

(∫ t

0
g(t− s) (ψx(s)− ψx(t)) ds

)2
dx ≤ Aα (h ◦ ψx) (t), (18)

where h(t) = αg(t)− g′(t) and Aα =
∫ +∞

0
g2(s)

αg(s)−g′(s)ds.

Proof. Cauchy-Schwarz inequality gives

∫ 1

0

(∫ t

0
g(t− s) (ψx(s)− ψx(t)) ds

)2
dx =

∫ 1

0

(∫ t

0

g(t− s)√
h(t− s)

√
h(t− s) (ψx(s)− ψx(t)) ds

)2

dx

≤
(∫ +∞

0

g2(s)
h(s)

ds
) ∫ 1

0

∫ t

0
h(t− s) (ψx(s)− ψx(t))

2 dsdx

= Aα (h ◦ ψx) (t). (19)

Lemma 4 (Jensen’s inequality). Given that G is a convex function on [a, b], f : Ω → [m, n] and h are integrable
functions on Ω, q(x) ≥ 0, and

∫
Ω q(x)dx = $ > 0, then

G
[

1
$

∫
Ω

f (x)q(x)dx
]
≤ 1

$

∫
Ω

G[ f (x)]q(x)dx.

3. Strategic lemmas
For convenience, we will denote the norm ‖ · ‖L2(0,1) and the inner product 〈., .〉L2(0,1) of the Lebesgue

space L2(0, 1) by ‖ · ‖ and 〈., .〉 respectively. The constants c > 0 and C > 0 are generic constants which may
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change in value from one line to the other or within the same line. We define the energy functional of problem
(7) as

E(t) =
ρ

2
‖ϕt‖2 +

k
2
‖ϕx‖2 +

J
2
‖ψt‖2 +

a
2
‖ψ‖2 +

1
2

(
δ−

∫ t

0
g(s)ds

)
‖ψx‖2

+
1
2
(g ◦ ψx)(t) + b〈ϕx, ψ〉+ ζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds, (20)

where ζ > 0 is a constant to be specified later, see [28] and λ > 0 satisfies

0 < λ <
2
τ1

loge

(
µ1

|µ2|
√

1− d
)

, (21)

and (g ◦ ψx)(t) =
∫ t

0 g(t− s)‖ψx(t)− ψx(s)‖2ds.

Lemma 5. Assume the conditions (A1)− (A5) hold. Then, the energy functional (20) satisfies

E′(t) ≤ 1
2
(g′ ◦ ψx)−

1
2

g(t)‖ψx‖2 −
(

µ1

2
− ζ

2

)
‖ψt‖2

−
[

ζ

2
e−λτ1(1− d)−

µ2
2

2µ1

]
‖ψt(t− τ(t))‖2

− λζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds ≤ 0, ∀ t ≥ 0. (22)

Proof. Differentiation of (20) gives

E′(t) =ρ〈ϕt, ϕtt〉+ k〈ϕx, ϕxt〉+ J〈ψt, ψtt〉+ a〈ψ, ψt〉+ b
d
dt
〈ϕx, ψ〉

+
1
2

d
dt

[(
1−

∫ t

0
g(s)ds

)
‖ψx(t)‖2

]
+

1
2

d
dt
(g ◦ ψx)(t)

+
ζ

2
‖ψt‖2 − ζ

2
e−λτ(t)(1− τ′(t))‖ψt(t− τ(t))‖2

− λζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds. (23)

Also, multiplying (7)1 by ϕt, (7)2 by ψt, integrating over (0, 1) and adding the two equations, we get

ρ〈ϕt, ϕtt〉+ k〈ϕx, ϕxt〉+ J〈ψt, ψtt〉+ a〈ψ, ψt〉+ b
d
dt
〈ϕx, ψ〉+ 1

2
d
dt

[(
1−

∫ t

0
g(s)ds

)
‖ψx(t)‖2

]
+

1
2

d
dt
(g ◦ ψx)(t)

=
1
2
(g′ ◦ ψx)(t)−

1
2

g(t)‖ψx(t)‖2 − µ1‖ψt(t)‖2 − µ2〈ψt(t), ψt(t− τ(t))〉. (24)

Young’s inequality yields

− µ2〈ψt(t), ψt(t− τ(t))〉 ≤ µ1

2
‖ψt‖2 +

µ2
2

2µ1
‖ψt(t− τ(t))‖2. (25)

Substituting (24) into (23) and taking into account (25), assumptions (A3) and (A4), we get

E′(t) ≤ 1
2
(g′ ◦ ψx)(t)−

1
2

g(t)‖ψx(t)‖2 −
(

µ1

2
− ζ

2

)
‖ψt‖2

−
[

ζ

2
e−λτ1(1− d)−

µ2
2

2µ1

]
‖ψt(t− τ(t))‖2 − λζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds. (26)

From condition (21), we can select ζ > 0 so that

µ2
2eλτ1

µ1(1− d)
< ζ < µ1. (27)
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Hence, (22) follows from (26) by virtue of (A1)− (A2) and (27). This completes the proof.

Lemma 6. Let t0 > 0. Then, the functional F1(t) = −J
∫ 1

0 ψt
∫ t

0 g(t− s) (ψ(t)− ψ(s)) dsdx along the solution of (7)
for any ε1, ε2 > 0 and 0 < α < 1 satisfies the estimate

F′1(t) ≤−
Jg0

2
‖ψt‖2 + ε1‖ψx‖2 + ε2‖ϕx‖2 + ε3‖ψ‖2 + C‖ψt(t− τ(t))‖2

+ CAα

(
1 +

1
ε1

+
1
ε2

+
1
ε3

)
(h ◦ ψx) (t), ∀ t ≥ t0. (28)

Proof. Differentiating F1, using (7)2 and integration by parts, we get

F′1(t) =− J
(∫ t

0
g(s)ds

)
‖ψt‖2 − J

∫ 1

0
ψt

∫ t

0
g′(t− s) (ψ(t)− ψ(s)) dsdx︸ ︷︷ ︸

I1

+

(
δ−

∫ t

0
g(s)ds

) ∫ 1

0
ψx

∫ t

0
g(t− s) (ψx(t)− ψx(s)) dsdx︸ ︷︷ ︸
I2

+
∫ 1

0

(∫ t

0
g(t− s) (ψx(t)− ψx(s)) ds

)2
dx︸ ︷︷ ︸

I3

+ b
∫ 1

0
ϕx

∫ t

0
g(t− s) (ψ(t)− ψ(s)) dsdx︸ ︷︷ ︸

I4

+ a
∫ 1

0
ψ
∫ t

0
g(t− s) (ψ(t)− ψ(s)) dsdx︸ ︷︷ ︸

I5

+ µ1

∫ 1

0
ψt

∫ t

0
g(t− s) (ψ(t)− ψ(s)) dsdx︸ ︷︷ ︸

I6

+ µ2

∫ 1

0
ψt(t− τ(t))

∫ t

0
g(t− s) (ψ(t)− ψ(s)) dsdx︸ ︷︷ ︸

I7

. (29)

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities, Lemmas 1- 3 and similar computations as in (19),
we estimate I1 − I7 as follows:

I1 =J
∫ 1

0
ψt

∫ t

0
h(t− s) (ψ(t)− ψ(s)) dsdx

− Jα
∫ 1

0
ψt

∫ t

0
g(t− s) (ψ(t)− ψ(s)) dsdx

≤σ1

2
‖ψt‖2 +

C
σ1

∫ 1

0

(∫ t

0
h(t− s) (ψ(t)− ψ(s)) ds

)2
dx

+
C
σ1

∫ 1

0

(∫ t

0
g(t− s) (ψ(t)− ψ(s)) ds

)2
dx

≤σ1

2
‖ψt‖2 +

C
σ1

(∫ t

0
h(s)ds

)
(h ◦ ψ) (t) +

CAα

σ1
(h ◦ ψ) (t)

≤σ1

2
‖ψt‖2 +

C(Aα + 1)
σ1

(h ◦ ψx) (t), for any σ1 > 0,

I2 ≤ε1‖ψx‖2 +
CAα

ε1
(h ◦ ψx) (t), for any ε1 > 0,

I3 ≤Aα (h ◦ ψx) (t),

I4 ≤ε2‖ϕx‖2 +
CAα

ε2
(h ◦ ψx) (t), for any ε2 > 0,

I5 ≤ε3‖ψ‖2 +
CAα

ε3
(h ◦ ψx) (t), for any ε3 > 0,

I6 ≤
σ1

2
‖ψt‖2 +

CAα

σ1
(h ◦ ψx) (t), for any σ1 > 0,

I7 ≤
σ1

2
‖ψt(t− τ(t))‖2 +

CAα

σ1
(h ◦ ψx) (t), for any σ1 > 0.

(30)
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Substituting the estimates in (30) into (29), we arrive at

F′1(t) ≤ −
(

J
∫ t

0
g(s)ds− σ1

)
‖ψt‖2 + ε1‖ψx‖2 + ε2‖ϕx‖2 + ε3‖ψ‖2

+ CAα

(
1 +

1
σ1

+
1
ε1

+
1
ε2

+
1
ε3

)
(h ◦ ψx) (t) +

σ1

2
‖ψt(t− τ(t))‖2. (31)

From (A1), we have that g(0) > 0 and g is continuous. Therefore, for t ≥ t0 > 0, we obtain

∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0 > 0. (32)

Thus, we select σ1 =
Jg0

2
to get (28). This completes the proof.

Lemma 7. Let (ϕ, ψ) be the solution of Problem (7). Then, the functional F2(t) = −ρ
∫ 1

0 ϕt ϕdx satisfies the estimate

F′2(t) ≤ −ρ‖ϕt‖2 + C‖ϕx‖2 + C‖ψx‖2, ∀ t ≥ 0. (33)

Proof. Differentiation of F2, using (7)1 and integration by parts, we obtain

F′2(t) = −ρ‖ϕt‖2 + k‖ϕx‖2 + b
∫ 1

0
ϕxψdx.

Applying Young’s and Poincaré’s inequalities, we obtain (33). This completes the proof.

Lemma 8. The functional F3(t) = J
∫ 1

0 ψtψdx+ bρ
k

∫ 1
0 ψ

∫ x
0 ϕt(y)dydx along the solution of problem (7) for any ε4 > 0

and 0 < α < 1 satisfies the estimate

F′3(t) =−
l
2
‖ψx‖2 −

(
a− b2

k

)
‖ψ‖2 + ε4‖ϕt‖2 ++C

(
1 +

1
ε4

)
‖ψt‖2

+ CAα (h ◦ ψx) (t) + C‖ψt(t− τ(t))‖2, ∀ t ≥ 0. (34)

Proof. Differentiation of F3, using (7) and integration by parts leads to

F′3(t) =J‖ψt‖2 − δ‖ψx‖2 −
(

a− b2

k

)
‖ψ‖2 +

bρ

k

∫ 1

0
ψt

∫ x

0
ϕt(y)dydx︸ ︷︷ ︸

I8

+
∫ 1

0
ψx

∫ t

0
g(t− s)ψx(s)dsdx︸ ︷︷ ︸

I9

− µ1

∫ 1

0
ψψtdx︸ ︷︷ ︸

I10

− µ2

∫ 1

0
ψψt(t− τ(t))dx︸ ︷︷ ︸

I11

. (35)

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities together with Lemmas 1− 3, we have

I8 ≤ ε4

∫ 1

0

(∫ x

0
ϕt(y)dy

)2
dx +

(bρ)2

4k2ε4
‖ψt‖2

≤ ε4‖ϕt‖2 +
(bρ)2

4k2ε4
‖ψt‖2, for any ε4 > 0, (36)

I9 =
∫ 1

0
ψx

∫ t

0
g(t− s) (ψx(s)− ψx(t)) dsdx +

(∫ t

0
g(s)ds

)
‖ψx‖2

≤
(∫ t

0
g(s)ds +

σ2

3

)
‖ψx‖2 +

C
σ2

∫ 1

0

(∫ t

0
g(t− s) (ψx(s)− ψx(t)) ds

)2
dx

≤
(∫ t

0
g(s)ds +

σ2

3

)
‖ψx‖2 +

CAα

σ2
(h ◦ ψx) (t), for any σ2 > 0, (37)

I10 ≤ σ2

3
‖ψx‖2 +

Cµ2
1

σ2
‖ψt‖2, for any σ2 > 0, (38)
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and

I11 ≤
σ2

3
‖ψx‖2 +

Cµ2
2

σ2
‖ψt(t− τ(t))‖2, for any σ2 > 0. (39)

Substituting (36)–(39) into (35), we arrive at

F′3(t) =−
(

δ−
∫ t

0
g(s)ds− σ2

)
‖ψx‖2 −

(
a− b2

k

)
‖ψ‖2 + ε4‖ϕt‖2

+

(
J +

(bρ)2

4k2ε4
+

Cµ2
1

σ2

)
‖ψt‖2 +

CAα

σ2
(h ◦ ψx) (t) +

Cµ2
2

σ2
‖ψt(t− τ(t))‖2. (40)

We choose σ2 =
l
2

to obtain (34). This completes the proof.

Lemma 9. Assume k
ρ = δ

J . Then, the functional

F4(t) =
|b|δρ

bk

∫ 1

0
ϕtψxdx +

|b|J
b

∫ 1

0
ψt ϕxdx− |b|ρ

bk

∫ 1

0
ϕt

∫ t

0
g(t− s)ψx(s)dsdx,

along the solution of (7), for any ε5 > 0 and 0 < α < 1 satisfies the estimate

F′4(t) ≤−
|b|
2
‖ϕx‖2 + ε5‖ϕt‖2 + C

(
1 +

1
ε5

)
‖ψx‖2 + C‖ψt‖2 + C‖ψt(t− τ(t))‖2

+
C(Aα + 1)

ε5
(h ◦ ψx) (t), ∀ t ≥ 0.

(41)

Proof. Differentiating F4, we get

F′4(t) =
|b|δρ

bk

∫ 1

0
ϕttψxdx +

|b|δρ

bk

∫ 1

0
ϕtψxtdx +

|b|J
b

∫ 1

0
ψtt ϕxdx

+
|b|J

b

∫ 1

0
ψt ϕxtdx− |b|ρ

bk

∫ 1

0
ϕtt

∫ t

0
g(t− s)ψx(s)dsdx

− |b|ρ
bk

∫ 1

0
ϕt

∫ t

0
g′(t− s)ψx(s)dsdx− |b|ρ

bk
g(0)

∫ 1

0
ϕtψxdx.

Using these equations in (7) and integration by parts, we arrive at

F′4(t) =
|b|δρ

k
‖ψx‖2 +

|b|
b

(
δρ

k
− J
) ∫ 1

0
ϕxψxtdx− |b|‖ϕx‖2

− |b|µ1

b

∫ 1

0
ψt ϕxdx− |b|µ2

b

∫ 1

0
ψt(t− τ(t))ϕxdx

− |b|a
b

∫ 1

0
ψϕxdx− |b|

k

∫ 1

0
ψx

∫ t

0
g(t− s)ψx(s)dsdx

− |b|ρ
bk

∫ 1

0
ϕt

∫ t

0
g′(t− s)ψx(s)dsdx− |b|ρ

bk
g(0)

∫ 1

0
ϕtψxdx.

Using the fact that k
ρ = δ

J , we get

F′4(t) =− |b|‖ϕx‖2 +
|b|δρ

k
‖ψx‖2 − |b|a

b

∫ 1

0
ψϕxdx︸ ︷︷ ︸

G1

− |b|µ1

b

∫ 1

0
ψt ϕxdx︸ ︷︷ ︸

G2

− |b|µ2

b

∫ 1

0
ψt(t− τ(t))ϕxdx︸ ︷︷ ︸

G3

− |b|
k

∫ 1

0
ψx

∫ t

0
g(t− s)ψx(s)dsdx︸ ︷︷ ︸

G4

− |b|ρ
bk

∫ 1

0
ϕt

∫ t

0
g′(t− s)ψx(s)dsdx︸ ︷︷ ︸

G5

− |b|ρ
bk

g(0)
∫ 1

0
ϕtψxdx︸ ︷︷ ︸

G6

. (42)
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Applying Cauchy-Schwarz, Young’s and Poincaré’s inequalities, taking into account Lemmas 1− 3, h = αg−
g′, we have for any σ3, ε5 > 0

G1 ≤
σ3

3
‖ϕx‖2 +

C
σ3
‖ψx‖2, (43)

G2 ≤
σ3

3
‖ϕx‖2 +

C
σ3
‖ψt‖2, (44)

G3 ≤
σ3

3
‖ϕx‖2 +

C
σ3
‖ψt(t− τ(t))‖2, (45)

G4 ≤
|b|
2k
‖ψx‖2 +

|b|
2k

∫ 1

0

(∫ t

0
g(t− s)ψx(s)− ψx(t)ds +

∫ t

0
g(s)dsψx(t)

)2
dx

≤|b|
2k
‖ψx‖2 +

|b|
k

∫ 1

0

(∫ t

0
g(t− s)ψx(s)− ψx(t)ds

)2
dx +

|b|(δ− l)2

2k
‖ψx‖2

≤
(
|b|
2k

+
|b|(δ− l)2

k

)
‖ψx‖2 +

|b|
k

Aα (h ◦ ψx) (t), (46)

G5 =
|b|ρ
bk

∫ 1

0
ϕt

∫ t

0
h(t− s)(ψx(s)− ψx(t))dsdx +

|b|ρ
bk

(∫ t

0
h(s)ds

) ∫ 1

0
ϕtψxdx

− |b|ρα

bk

∫ 1

0
ϕt

∫ t

0
g(t− s)ψx(s)dsdx

≤3ε5

4
‖ϕt‖2 +

C
ε5

∫ 1

0

(∫ t

0
h(t− s)ψx(s)− ψx(t)ds

)2
dx +

C
ε5
‖ψx‖2

+
C
ε5

∫ 1

0

(∫ t

0
g(t− s)ψx(s)− ψx(t)ds +

∫ t

0
g(s)dsψx(t)

)2
dx

≤3ε5

4
‖ϕt‖2 +

C
ε5
‖ψx‖2 +

C(Aα + 1)
ε5

(h ◦ ψx) (t), (47)

and
G6 ≤

ε5

4
‖ϕt‖2 +

C
ε5
‖ψx‖2. (48)

Substitution of (43)− (48) into (42) yields

F′4(t) =− (|b| − σ3) ‖ϕx‖2 +

(
|b|δρ

k
+

C
σ3

+
|b|
2k

+
|b|(δ− l)2

k
+

C
ε5

)
‖ψx‖2

+ ε5‖ϕt‖2 +
C
σ3
‖ψt‖2 +

C
σ3
‖ψt(t− τ(t))‖2 +

(
CAα +

C(Aα + 1)
ε5

)
(h ◦ ψx) (t). (49)

Finally, we choose σ3 =
|b|
2

to obtain (41). This completes the proof.

Lemma 10. The functional F5(t) =
∫ t

0 f (t − s)‖ψx(s)‖2ds, where f (t) =
∫ +∞

t
g(s)ds, along the solution of (7)

satisfies the estimate

F′5(t) ≤ 3(δ− l)‖ψx‖2
2 −

1
2
(g ◦ ψx)(t), ∀ t ≥ 0. (50)

Proof. Differentiation of F5 and using the fact that f ′(t) = −g(t) lead to

F′5(t) =
∫ t

0
f ′(t− s)‖ψx(s)‖2ds + f (0)‖ψx‖2

=− (g ◦ ψx)(t) + f (t)‖ψx‖2 − 2
∫ 1

0
ψx

∫ t

0
g(t− s) (ψx(s)− ψx(t)) dsdx.

Cauchy-Schwarz inequality and condition (A1) give

−2
∫ 1

0
ψx

∫ t

0
g(t− s) (ψx(s)− ψx(t)) dsdx ≤ 2(δ− l)‖ψx‖2 +

∫ t
0 g(s)ds
2(δ− l)

(g ◦ψx)(t) ≤ 2(δ− l)‖ψx‖2 +
1
2
(g ◦ψx)(t).



Open J. Math. Sci. 2021, 5, 147-161 156

Therefore,

F′5(t) ≤ 2(δ− l)‖ψx‖2 − 1
2
(g ◦ ψx)(t) + f (t)‖ψx‖2.

Since f ′(t) = −g(t) ≤ 0, it follows that f (t) ≤ f (0) = δ− l. Thus, we have

F′5(t) ≤ 3(δ− l)‖ψx‖2 − 1
2
(g ◦ ψx)(t), ∀ t ≥ 0.

For the next lemma, we consider the Lyapunov functional K defined by

K(t) = NE(t) + N1F1(t) + N2F2(t) + N3F3(t) + N4F4(t), (51)

where N, Nj, j = 1, 2, 3, 4 are positive constants to be specified later.

Lemma 11. Assume k
ρ = δ

J . Then, for suitable choice of N, Nj, j = 1, 2, 3, 4, the Lyapunov functional K along the
solution of (7) satisfies the estimate

K′(t) ≤− β
(
‖ϕt‖2 + ‖ϕx‖2 + ‖ψt‖2 + ‖ψx‖2 + ‖ψ‖2

)
+

1
4
(g ◦ ψx) (t), ∀ t ≥ t0 (52)

for some β > 0 and K ∼ E, that is
α1E(t) ≤ K(t) ≤ α2E(t), ∀ t ≥ 0 (53)

holds for some α1, α2 > 0.

Proof. Using (51) and recalling that h(t) = αg(t)− g′(t), then Lemmas 6−10 yields, for all t ≥ t0,

K′(t) ≤− [N2ρ− N3ε4 − N4ε5] ‖ϕt‖2 −
[

N4|b|
2
− N2C− N1ε2

]
‖ϕx‖2

−
[

Nγ2 +
N1 Jg0

2
− N3

(
1 +

1
ε4

)
− N4C

]
‖ψt‖2

−
[

N3l
2
− N2C− N1ε1 − N4C

(
1 +

1
ε5

)]
‖ψx‖2 − [N3γ1 − N1ε3] ‖ψ‖2 +

Nα

2
(g ◦ ψx) (t)

− [Nγ3 − N1C− N3C− N4C] ‖ψt(t− τ(t))‖2 − Nλζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds

−
[

N
2
− CAα

(
N1

(
1 +

1
ε1

+
1
ε2

+
1
ε3

)
+ N3 +

N4

ε5

)]
(h ◦ ψx) (t), (54)

where γ1 =
(

a− b2

k

)
> 0, γ2 =

(
µ1
2 −

ζ
2

)
> 0, γ3 =

(
ζ
2 e−λτ1(1− d)− µ2

2
2µ1

)
> 0 by virtue of (3) and (27).

Next, we choose

N2 = 1, ε1 =
N3l
4N1

, ε2 =
N4|b|
4N1

, ε3 =
N3γ1

2N2
, ε4 =

ρ

4N3
, ε5 =

ρ

4N4
(55)

and (54) becomes

K′(t) ≤− ρ

2
‖ϕt‖2 −

[
N4|b|

4
− C

]
‖ϕx‖2 −

[
Nγ2 +

N1 Jg0

2
− N3

(
1 +

4N3

ρ

)
− N4C

]
‖ψt‖2

−
[

N3l
4
− N4C

(
1 +

4N4

ρ

)
− C

]
‖ψx‖2 − N3γ1

2
‖ψ‖2

− [Nγ3 − (N1 + N3 + N4)C] ‖ψt(t− τ(t))‖2

+
Nα

2
(g ◦ ψx) (t)−

Nλζ

2

∫ t

t−τ(t)
e−λ(t−s)‖ψt(s)‖2ds

−
[

N
2
− CAα

(
N1

(
1 +

4N1

N3l
+

4N1

N4|b|
+

2N1

N3γ1

)
+ N3 +

N2
4

ρ

)]
(h ◦ ψx) (t).
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Now, we choose the remaining constants: First, we select N4 so that

N4|b|
4
− C > 0. (56)

Then, we choose N3 large enough such that

N3l
4
− N4C

(
1 +

4N4

ρ

)
− C > 0. (57)

Hence N3 and N4 are fixed, we choose N1 large so that

N1 Jg0

2
− N3

(
1 +

4N3

ρ

)
− N4C > 0. (58)

We have that αg2(s)
h(s) = αg2(s)

αg(s)−g′(s) < g(s). Thus, using the dominated convergence theorem, we get

lim
α→0

αAα = lim
α→0

∫ +∞

0

αg2(s)
αg(s)− g′(s)

ds = 0. (59)

Thus, there exist 0 < α0 < 1 such that for all 0 < α ≤ α0, we have

αAα <
1

4C
(

N1

(
1 + 4N1

N3l +
4N1

N4|b|
+ 2N1

N3γ1

)
+ N3 +

N2
4

ρ

) . (60)

Finally, we choose N so large and take α = 1
2N Such that

Nγ3 − (N1 + N3 + N4)C > 0,

N
2
− CAα

(
N1

(
1 +

4N1

N3l
+

4N1

N4|b|
+

2N1

N3γ1

)
+ N3 +

N2
4

ρ

)
> 0.

(61)

The analysis from (55) − (61) yields (52). Applying Young’s, Cauchy-Schwarz, and Poincaré’s inequalities, we
obtain (53) easily. This completes the proof.

4. Main stability result
The main stability result of the work is the following:

Theorem 2. Assume k
ρ = δ

J and (A1)− (A5) hold. Then, there exist λ1 > 0, λ2 > 0 such that the solution energy
(20) satisfies

E(t) ≤ λ2M−1
1

(
λ1

∫ t

t0

ξ(s)ds
)

, ∀ t ≥ t0, (62)

where M1(t) =
∫ r

t
1

sM′(s)ds and M1 is a strictly decreasing and strictly convex function on (0, r] with limt→0 M1(t) =
+∞.

Proof. From (13) and (22), we have ∀ t ≥ t0∫ t0

0
g(s)‖ψx(t)− ψx(t− s)‖2ds ≤ − g(0)

β1

∫ t0

0
g′(s)‖ψx(t)− ψx(t− s)‖2ds ≤ −CE′(t). (63)

Thus, (52) and (63) implies

K′(t) ≤ −ηE(t) +
1
2
(g ◦ ψx)(t) ≤ −ηE(t)− CE′(t) +

1
2

∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖2ds,

for some η > 0. Let K1 = K + CE ∼ E, by virtue of (53), it follows that

K′1(t) ≤ −ηE(t) +
1
2

∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖2ds, ∀ t ≥ t0. (64)
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To complete the proof, we divide it into two parts:
Case 1: when M(t) is linear. Multiplying (64) by ξ(t), keeping in mind (22) and (A2), we get

ξ(t)K′1(t) ≤− ηξ(t)E(t) +
1
2

ξ(t)
∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖2ds

≤− ηξ(t)E(t) +
1
2

∫ t

t0

ξ(s)g(s)‖ψx(t)− ψx(t− s)‖2ds

≤− ηξ(t)E(t)− 1
2

∫ t

t0

g′(s)‖ψx(t)− ψx(t− s)‖2ds

≤− ηξ(t)E(t)− CE′(t), ∀ t ≥ t0. (65)

From (A2), ξ is non-increasing, thus, we get

(ξK1 + CE)′(t) ≤ −ηξ(t)E(t), ∀ t ≥ t0, (66)

and
ξK1 + CE ∼ E. (67)

Since K ∼ E, thus, setting K2(t) = ξ(t)K1(t) + CE(t), there exists η1 > 0 so such that

K′2(t) ≤ −ηξ(t)E(t) ≤ −η1ξ(t)K2(t), ∀ t ≥ t0. (68)

Integration of (68) over (t0, t) and recalling (67), we obtain

E(t) ≤ λ1e
−λ2

∫ t

t0

ξ(s)ds
= λ1M−1

1

(
λ2

∫ t

t0

ξ(s)ds
)

.

Case 2: when M(t) is nonlinear. In this case, we consider K(t) = K(t) + F5(t). Then, Lemmas 10 and (52)
yield for some d > 0

K′(t) ≤ −dE(t), ∀ t ≥ t0. (69)

It follows that d
∫ t

t0
E(s)ds ≤ K(t0)−K(t) ≤ K(t0), from which we get

∫ +∞

0
E(s)ds < ∞. (70)

From (70), we can define p(t) by p(t) := v
∫ t

t0
‖ψx(t)− ψx(t− s)‖2ds, where 0 < v < 1 so that

p(t) < 1, ∀ t ≥ t0. (71)

Furthermore, we assume p(t) > 0 for all t ≥ t0; otherwise, it follows from (64) that the solution energy is
exponentially stable. Also, we define the functional q(t) by q(t) = −

∫ t
t0

g′(s)‖ψx(t)− ψx(t− s)‖2ds and it’s
easy to see that q(t) ≤ −CE′(t), ∀ t ≥ t0. From (A2), M is strictly convex on (0, r] (where r = g(t0)) and
M(0) = 0, this implies

M(θs) ≤ θM(s), 0 ≤ θ ≤ 1 and s ∈ (0, r]. (72)

Using (71),(72), assumption (A2) and Jensen’s inequality, we have

q(t) =
1

vp(t)

∫ t

t0

p(t)(−g′(s))v‖ψx(t)− ψx(t− s)‖2ds

≥ 1
vp(t)

∫ t

t0

p(t)ξ(s)M(g(s))v‖ψx(t)− ψx(t− s)‖2ds

≥ ξ(t)
vp(t)

∫ t

t0

M(p(t)g(s))v‖ψx(t)− ψx(t− s)‖2ds

≥ ξ(t)
v

M
(

v
∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖s2ds
)



Open J. Math. Sci. 2021, 5, 147-161 159

=
ξ(t)
v

M̄
(

v
∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖2ds
)

, (73)

where M̄ is the convex extension of M on (0,+∞), see (14). From (73), we have

∫ t

t0

g(s)‖ψx(t)− ψx(t− s)‖2ds ≤ 1
v

M̄−1
(

vq(t)
ξ(t)

)
.

Thus, (64) gives

K′1(t) ≤ −ηE(t) + CM̄−1
(

vq(t)
ξ(t)

)
, ∀ t ≥ t0. (74)

Let r0 < r to be specified later and define the functional K3 by K3(t) := M̄′
(

r0
E(t)
E(0)

)
K1(t) + E(t) ∼ E(t). Since

K1 ∼ E. Using (74) and recalling that E′(t) ≤ 0, M̄′(t) > 0, M̄′′(t) > 0, we have for all t ≥ t0

K′3(t) = r0
E′(t)
E(0)

M̄′′
(

r0
E(t)
E(0)

)
K1(t) + M̄′

(
r0

E(t)
E(0)

)
K′1(t) + E′(t)

≤ −ηE(t)M̄′
(

r0
E(t)
E(0)

)
+ CM̄′

(
r0

E(t)
E(0)

)
M̄−1

(
v

q(t)
ξ(t)

)
+ E′(t). (75)

Now, we consider conjugate of M̄ denoted by M̄∗ define in the sense of Young, see Arnold [29] page 61-64,
define by

M̄∗(s) = s(M̄′)−1(s)− M̄
[
(M̄′)(s)

]
(76)

and M̄∗ satisfies the Young’s inequality

XY ≤ M̄∗(X) + M̄(Y). (77)

Setting X = M̄′
(

r0
E(t)
E(0)

)
and Y = M̄−1

(
v

q(t)
ξ(t)

)
, then (22) and (75)−(77) yield for all t ≥ t0

K′3(t) ≤ −ηE(t)M̄′
(

r0
E(t)
E(0)

)
+ CM̄∗

(
M̄′
(

r0
E(t)
E(0)

))
+ Cv

q(t)
ξ(t)

+ E′(t)

≤ −ηE(t)M̄′
(

r0
E(t)
E(0)

)
+ Cr0

E(t)
E(0)

M̄′
(

r0
E(t)
E(0)

)
+ Cv

q(t)
ξ(t)

+ E′(t). (78)

Now, multiplying (78) by ξ(t) keeping in mind that r0
E(t)
E(0) < r and M̄′

(
r0

E(t)
E(0)

)
= M′

(
r0

E(t)
E(0)

)
, we arrive at

ξ(t)K′3(t) ≤ −ηξ(t)E(t)M′
(

r0
E(t)
E(0)

)
+ Cr0

E(t)
E(0)

ξ(t)M′
(

r0
E(t)
E(0)

)
+ Cvq(t) + ξ(t)E′(t)

≤ −ηξ(t)E(t)M′
(

r0
E(t)
E(0)

)
+ Cr0

E(t)
E(0)

ξ(t)M′
(

r0
E(t)
E(0)

)
− CE′(t). (79)

We set K4(t) = ξ(t)K3(t) + CE(t) ∼ E(t) since K3 ∼ E. Thus there exist n0, n1 positive such that

n0K4(t) ≤ E(t) ≤ n1K4(t). (80)

Therefore, estimate (79) yields

K′4(t) ≤ −(ηE(0)− Cr0)ξ(t)
E(t)
E(0)

ξ(t)M′
(

r0
E(t)
E(0)

)
, ∀ t ≥ t0.

We choose r0 < r small enough so that ηE(0)− Cr0 > 0 to arrive at

K′4(t) ≤ −η2ξ(t)
E(t)
E(0)

ξ(t)M′
(

r0
E(t)
E(0)

)
= −η2ξ(t)M2

(
E(t)
E(0)

)
, ∀ t ≥ t0, (81)
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for some constant η2 > 0 and M2(s) = sM′(r0s). We note that M′2(s) = M′(r0s) + r0sM′′(r0s), hence, the strict
convexity of M on (0, r], yields M2(s) > 0, M′2(s) > 0 on (0, r]. Let R(t) = n0

K4(t)
E(0) . Using (80) and (81), we

obtain
R(t) ∼ E(t), (82)

and

R′(t) = n0
K′4(t)
E(0)

≤ −η3ξ(t)M2(R(t)), ∀ t ≥ t0, (83)

for some η3 > 0. Integration of (83) over (t0, t), gives

η3

∫ t

t0

ξ(s)ds ≤ −
∫ t

t0

R′(s)
M2(R(s))

ds =
1
r0

∫ r0R(t0)

r0R(t)

1
sM′(s)

ds, (84)

from which we get

R(t) ≤ 1
r0

M−1
1

(
η3

∫ t

t0

ξ(s)ds
)

, where M1(t) =
∫ r

t

1
sM′(s)

ds. (85)

Using properties of M, we easily see that M1 is strictly decreasing function on (0, r] and lim
t−→0

M1(t) = +∞.

Therefore, (62) follows from (82) and (85). This completes the proof.

Remark 1. The stability result in Theorem 2 is general and optimal in the sense that it agrees with the decay
rate of g, see [30], Remark 2.3.

Corollary 1. Suppose k
ρ = δ

J , and (A1)− (A5) hold. Assume the function M in (A2) be defined by H(s) = sp, p ≥ 1,
then there exist λ1, λ2, C > 0 such that (20) satisfies

E(t) ≤


λ2 exp

(
−λ1

∫ t

0
ξ(s)ds

)
, for p = 1,

C(
1+

∫ t

t0

ξ(s)ds
) 1

p−1
, for p > 1. (86)

5. Examples

(1). Let g(t) = ν1e−ν2t, t ≥ 0, ν1, ν2 > 0 and ν2 is chosen so that (A1) holds. Then, g′(t) = −ν1ν2e−ν2t =

−ν2M(g(t)) with M(t) = t. Thus, from (62), the solution energy (20) satisfies E(t) ≤ Ce−λt, ∀ t ≥ 0,
where λ = ν2λ1.

(2). Let g(t) = ue−(1+t)v
, t ≥ 0, u > 0, 0 < v < 1 are constants and u is chosen such that (A1) holds. Then,

g′(t) = −uv(1 + t)v−1e−(1+t)v
= −ξ(t)M(g(t)), where ξ(t) = v(1 + t)v−1 and M(t) = t. Thus, we get

from (62) that E(t) ≤ λ2e−λ1(1+t)v
, ∀ t ≥ 0.

(3). Let g(t) = u
(1+t)v , t ≥ 0, u > 0, v > 1 are constants and u is chosen such that (A1) holds. We have

g′(t) = −uv
(1+t)v+1 = −ξ

(
u

(1+t)v

) v+1
v

= −ξgp(t) = −ξM(g(t)), where M(t) = tp, p = v+1
v satisfying

1 < p < 2 and ξ = v
u

1
v
> 0. Hence, we deduce from (86) that E(t) ≤ C

(1+t)v , ∀ t ≥ 0.
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