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ABSTRACT 
 

A QSAR study has been carried out to rationalize the 5-HT6 receptor binding affinities of the 1-aryl 
sulfonyl tryptamine derivatives using Dragon descriptors. A higher value of molecular symmetry 
and topology accounting Randic shape index descriptor PW4 (path/walk 4) would be favorable to 
improve the binding affinity. Presence of more number of bromine atoms (descriptor nBR) and 
presence of such structural fragment in which a hydrogen atom attached to sp3 hybridized carbon 
with no hetero atom rather than one hetero atom attached to next carbon atom (descriptors H-046 
and H-052) will be supportive to the activity. The prevalence of atomic properties to explain the 
binding affinity is evident from the associations of polarizability to the path length 7 of Moran 
autocorrelation (MATS7p), masses to eigenvalues n.2 and 7 of Burden m atrix (BELm2 and 
BEHm7), Sanderson electronegativity to highest eigenvalue n.2 Burden matrix (BEHe2) and van 
der Waals volume to path length 8 of Geary autocorrelation (GATS8v) and charge content in terms 
of topological and mean topological charge indices (GGI3 and JGI2). The dominance of the 
information content of the descriptors, emerged in CP-MLR models, has also confirmed by the PLS 
analysis.  
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The derived QSAR models and descriptors shared in these models revealed that the substituents 
of tryptamine moiety have sufficient scope for further modification.   
 

 
Keywords: QSAR; 1-aryl sulfonyl tryptamines; 5-HT6 ligands; binding affinity; combinatorial protocol in 

multiple linear regression (CP-MLR).   
 
1. INTRODUCTION 
 
The 5-HT6 receptor, a member of 5-
Hydroxytryptamine (5-HT; serotonin) receptor 
family, plays a vital role in the modulation of 
learning, memory [1-3] and feeding behavior [4,5] 
related disorders. The 5-HT6 receptor is 
positively coupled to adenylyl cyclase [6-8]. It is 
mainly localized in olfactory tubercles, striatum, 
nucleus accumbens, and hippocampus. Lower 
levels have been found in the amygdale, 
hypothalamus, substantia nigra, cerebellum, or 
cerebral cortex. Many antipsychotic and 
antidepressant drugs have shown significant 
affinity for 5-HT6 receptor [9,10]. Over the past 
few years, 5-HT6 receptor has become an 
important therapeutic target for schizophrenia, 
anxiety, impairment of learning, memory and 
obesity [11-17] due to the specific localization of 
5-HT6 receptors in CNS and high affinity of 
antipsychotic and antidepressant drugs. 
 
SB-742457 [18], SUVN-502 [19], Lu AE58054 
[20], SAM-760 [21] and SYN-114 [22] are among 
the clinically advancing ligands for the 5-HT6 
receptor. The one of the most explored chemical 
class of 5-HT6 receptor ligands is the indole 
nucleus. MS-245 [23] (the N1-arylsulfonyl 
tryptamines), PMDT [24] (2-aryl tryptamines) and 
carbazole derivatives (conformationally restricted 
tryptamines) [25] are representative from this 
class. A series of rigidized side chain tryptamine 
derivatives have been synthesized and evaluated 
for the 5-HT6 receptor binding affinity by Nirogi et 
al. [26]. A QSAR study has been carried out on 
the binding affinities of these rigidized side chain 
tryptamine derivatives to rationalize the 
substituent variations and to provide insight for 
further modification.  
 
2. MATERIALS AND METHODS 
 
2.1 Chemical Structure Database and 

Biological Activity 
 
This study comprises a chemical structure 
database of reported forty three tryptamine 
derivatives. The in vitro binding affinities of these 
compounds were determined by nonradioactive 

cell-based assay using a stable CHO cell line 
expressing recombinant human 5-HT6R. The 
structural variations and the binding affinities, in 
terms of Kb, of titled compounds have been given 
in Table 1. The reported activity data has been 
used for subsequent QSAR analyses as the 
response variables. For the purpose of modeling 
all 43 analogues have been divided into training 
and test sets. Out of the 43 analogues, nearly 
one fourth compounds (10) have been placed in 
the test set for the validation of derived models. 
The training and test set compounds are also 
listed in Table 1. 
 
2.2 Theoretical Molecular Descriptors 
 
The structures of the compounds under study 
have been drawn in 2D ChemDraw [27]. The 
drawn structures were then converted into 3D 
modules using the default conversion procedure 
implemented in the CS Chem3D Ultra. The 
energy of these 3D-structures was minimized in 
the MOPAC module using the AM1 procedure for 
closed shell systems. This will ensure a well 
defined conformer relationship among the 
compounds of the study. All these energy 
minimized structures of respective compounds 
have been ported to DRAGON software [28] for 
the computation of descriptors for the titled 
compounds (Table 1). This software offers 
several hundreds of descriptors from different 
perspectives corresponding to 0D-, 1D-, and 2D-
descriptor modules. The outlined modules 
comprised of ten different classes, namely, the 
constitutional (CONST), the topological (TOPO), 
the molecular walk counts (MWC), the BCUT 
descriptors (BCUT), the Galvez topological 
charge indices (GALVEZ), the 2D 
autocorrelations (2D-AUTO), the functional 
groups (FUNC), the atom-centered fragments 
(ACF), the empirical descriptors (EMP), and the 
properties describing descriptors (PROP). For 
each of these classes the DRAGON software 
computes a large number of descriptors which 
are characteristic to the molecules under multi-
descriptor environment. The definition and scope 
of these descriptor’s classes is given in Table 2. 
The description of these descriptors is available 
in manuals [28,29]. The combinatorial protocol in 
multiple linear regression [30] procedure has 
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been used in the present work for developing 
QSAR models. This procedure, as a variable 

selection or model development has been 
employed successfully by us [31-33].   

 
Table 1. Structuresa and observed and modeled binding activities of 1-aryl sulfonyl 

tryptamines 
 

N

R1

S

O

O

R2

R3

 
Cpd. R1 R2 R3 pKb 

Obsda. Calc. 
Eq. (9) PLS 

1 OCH3 
N

H3C
CH3

 

H 8.24 8.16 8.48 

2 H 
N CH3

 

H 8.82 9.51 9.46 

3 H 
N CH3

 

4-F 9.00 8.77 8.75 

4b H 
N CH3

 

2-Br 9.89 10.45 10.23 

5 H 
N C2H5

 

2-Br 10.00 9.46 9.63 

6 OCH3 
N CH3

 

H 9.05 9.23 9.32 

7 OCH3 
N CH3

 

2-Br 9.89 9.77 9.83 

8 OCH3 
N CH3

 

4-
CH(CH3)2 

10.00 9.69 9.86 

9 OCH3 
N C2H5

 

2-Br 8.89 9.07 9.38 

10 OC2H5 
N CH3

 

2-Br 10.00 9.49 9.62 

11 OCH(CH3)2 
N CH3

 

2-Br 8.38 9.09 9.13 

12 H 
N CH3

Cl

 

H 10.00 10.07 9.78 
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Cpd. R1 R2 R3 pKb 
Obsda. Calc. 

Eq. (9) PLS 
13 H 

N CH3

Cl

 

4-Br 9.46 9.29 8.90 

14b H 
N CH3

Cl

 

4-F 9.22 9.38 9.06 

15 H 
N CH3

Cl

  

4-OCH3 8.00 8.38 8.45 

16b H 
N C2H5

Cl

 

2-Br 8.96 9.27 9.48 

17 H 
N C2H5

Cl

 

4-Br 8.41 8.60 8.36 

18 H 
N C2H5

Cl

 

4-F 8.24 8.66 8.49 

19 H 
N C2H5

Cl

 

3-Cl 7.90 8.10 8.28 

20 OCH3 
N CH3

Cl

 

H 10.00 9.41 9.51 

21b OCH3 
N CH3

Cl

 

2-Br 9.52 9.59 9.82 

22b OCH3 
N CH3

Cl

 

4-Br 8.75 8.93 8.75 

23 OCH3 
N CH3

Cl

 

4-F 9.20 8.83 8.86 

24b OCH3 
N CH3

Cl

 

3-Cl 9.08 8.51 8.71 

25 OCH3 
N CH3

Cl

 

4-OCH3 8.78 8.53 8.51 

26 OCH3 
N CH3

Cl

 

4-
CH(CH3)2 

9.60 9.82 9.98 

27 OCH3 
N CH3

Cl

 

2,4,5-Cl 7.73 7.77 7.83 
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Cpd. R1 R2 R3 pKb 
Obsda. Calc. 

Eq. (9) PLS 
28 OCH3 

N C2H5

Cl

 

H 9.15 9.00 9.08 

29b OCH3 
N C2H5

Cl

 

2-Br 8.28 8.92 9.34 

30 OCH3 
N C2H5

Cl

 

4-Br 8.32 8.35 8.29 

31b OCH3 
N C2H5

Cl

 

4-F 8.06 8.44 8.43 

32 OCH3 
N C2H5

Cl

 

3-Cl 8.62 8.06 8.26 

33b OCH3 
N C2H5

Cl

 

4-OCH3 7.84 8.21 8.18 

34 OC2H5 
N CH3

Cl

 

H 9.00 9.31 9.22 

35 OC2H5 
N CH3

Cl

 

2-Br 9.40 9.72 9.63 

36b OC2H5 
N CH3

Cl

 

4-Br 8.35 9.04 8.57 

37 OC2H5 
N CH 3

Cl

 

4-F 8.21 8.64 8.57 

38 OC2H5 
N C2H5

Cl

 

2-Br 9.35 9.14 9.13 

39 OCH(CH3)2 
N CH 3

Cl

 

H 9.15 8.92 8.67 

40 OCH(CH3)2 
N CH3

Cl

 

4-F 8.14 8.40 8.07 

41 F 
N CH 3

Cl

 

H 10.00 9.84 9.52 

42 F 
N CH3

Cl

 

2-Br 9.60 9.72 9.83 

43 F 
N C 2H 5

Cl

 

3-Cl 8.21 7.94 8.07 

aReference [26], bCompounds included in test set 
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Before the application of CP-MLR procedure, all 
those descriptors which are intercorrelated 
beyond 0.90 and showing a correlation of less 
than 0.1 with the biological endpoints (descriptor 
vs. activity, r < 0.1) were excluded. This has 
reduced the total dataset of the compounds from 
471 to 89 descriptors as relevant ones for the 
binding activity. A brief description of the 
computational procedure is given below. 
 
2.3 Model Development 
 
The combinatorial protocol in multiple linear 
regression (CP-MLR) is a ‘filter’ based variable 
selection procedure for model development in 
QSAR studies. It involves selected subset 
regressions. In this procedure a combinatorial 
strategy with appropriately placed ‘filters’ has 
been interfaced with MLR to result in the 
extraction of diverse structure-activity models, 
each having unique combination of descriptors 
from the dataset under study. In this, the 
contents and number of variables to be 
evaluated are mixed according to the predefined 
confines. Here the ‘filters’ are significance 
evaluators of the variables in regression at 
different stages of model development. Of these, 
filter-1 is set in terms of inter-parameter 
correlation cutoff criteria for variables to stay as a 
subset (filter-1, default value 0.3 and upper limit 
≤ 0.79). In this, if two variables are correlated 
higher than a predefined cutoff value the 
respective variable combination is forbidden and 
will be rejected. The second filter is in terms of t-
values of regression coefficients of variables 
associated with a subset (filter-2, default value 
2.0). Here, if the ratio of regression coefficient 
and associated standard error of any variable is 
less than a predefined cutoff value then the 
variable combination will be rejected. Since 
successive additions of variables to multiple 
regression equation will increase successive 
multiple correlation coefficient (r) values, square-
root of adjusted multiple correlation coefficient of 
regression equation, r-bar, has been used to 
compare the internal explanatory power of 
models with different number of variables. 
Accordingly, a filter has been set in terms of 
predefined threshold level of r-bar (filter-3, 
default value 0.71) to decide the variables’ ‘merit’ 
in the model formation. Finally, to exclude false 
or artificial correlations, the external consistency 
of the variables of the model have been 
addressed in terms of cross-validated R2 or Q2 

criteria from the leave-one-out (LOO) cross-
validation procedure as default option (filter-4, 
default threshold value 0.3 ≤ Q2 

≤ 1.0). All these 

filters make the variable selection process 
efficient and lead to unique solution. In order to 
collect the descriptors with higher information 
content and explanatory power, the threshold of 
filter-3 was successively incremented with 
increasing number of descriptors (per equation) 
by considering the r-bar value of the preceding 
optimum model as the new threshold for next 
generation.  
 
2.4 Model Validation 
 
In this study, the data set is divided into training 
set for model development and test set for 
external prediction. Goodness of fit of the models 
was assessed by examining the multiple 
correlation coefficient (r), the standard deviation 
(s), the F-ratio between the variances of 
calculated and observed activities (F). A number 
of additional statistical parameters such as the 
Akaike’s information criterion, AIC [34,35], the 
Kubinyi function, FIT [36,37], and the Friedman’s 
lack of fit, LOF [38] (Eqs. 1-3) have also been 
derived to evaluate the best model. 
 

2

RSS (n p )
AIC

(n p )

′× +=
′−  

                      (1) 

 
2

2 2

r (n k 1)
FIT

(n k ) (1 r )

× − −=
+ × −

                               (2) 

 

2

RSS
nLOF

k(d 1)
1

n

=
+ −  

                                 (3) 

 
where, RSS is the sum of the squared 
differences between the observed and the 
estimated activity values, k is the number of 
variables in the model, p' is the number of 
adjustable parameters in the model, and d is the 
smoothing parameter. The AIC takes into 
account the statistical goodness of fit and the 
number of parameters that have to be estimated 
to achieve that degree of fit. The FIT, closely 
related to the F-value (Fisher ratio), was proved 
to be a useful parameter for assessing the quality 
of the models. The main disadvantage of the F-
value is its sensitivity to changes in k              
(the number of variables in the equation, which 
describe the model), if k is small, and its lower 
sensitivity if k is large. The FIT criterion has a low 
sensitivity toward changes in k-values, as long as 
they are small numbers, and a substantially 
increasing sensitivity for large k-values. The 
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model that produces the minimum value of AIC 
and the highest value of FIT is considered 
potentially the most useful and the best. The LOF 
takes into account the number of terms used in 
the equation and is not biased, as are other 
indicators, toward large numbers of parameters. 
A minimum LOF value infers that the derived 
model is statistically sound.  
 
The internal validation of derived model was 
ascertained through the cross-validated index, 
Q2, from leave-one-out and leave-five-out 
procedures. The LOO method creates a number 
of modified data sets by taking away one 
compound from the parent data set in such a 
way that each observation has been removed 
once only. Then one model is developed for each 
reduced data set, and the response values of the 
deleted observations are predicted from these 
models. The squared differences between 
predicted and actual values are added to give the 
predictive residual sum of squares, PRESS. In 
this way, PRESS will contain one contribution 
from each observation. The cross-validated 
Q2

LOO value may further be calculated as  
 

2
LOO

PRESSQ 1 SSY= −                            (4) 

 
where, SSY represents the variance of the 
observed activities of molecules around the 
mean value. In leave-five-out procedure, a group 
of five compounds is randomly kept outside the 
analysis each time in such a way that all the 
compounds, for once, become the part of the 
predictive groups. A value greater than 0.5 of Q2-
index hints toward a reasonable robust model.  
 
The external validation or predictive power of 
derived model is based on test set compounds. 
The squared correlation coefficient between the 
observed and predicted values of compounds 
from test set, r2

Test, has been calculated as 
 

2
Pred(Test) (Test)2

Test 2
(Test) (Training)

(Y Y )
r 1

(Y Y )

−
= −

−
∑
∑

               (5) 

where, YPred(Test) and Y(Test) indicate predicted and 
observed activity values, respectively of the test-
set compounds, and Y� (Training) indicate mean 
activity value of the training set. r2

Test is the 
squared correlation coefficient between the 
observed and predicted data of the test-set. A 
value greater than 0.5 of r2

Test suggests that the 
model obtained from training set has a reliable 
predictive power.  
 
2.5 Y-randomization  
 
Chance correlations, if any, associated with the 
CP-MLR models were recognized in 
randomization test [39,40] by repeated 
scrambling of the biological response. The data 
sets with scrambled response vector have been 
reassessed by multiple regression analysis 
(MRA). The resulting regression equations, if 
any, with correlation coefficients better than or 
equal to the one corresponding to the 
unscrambled response data were counted. Every 
model has been subjected to 100 such 
simulation runs. This has been used as a 
measure to express the percent chance 
correlation of the model under scrutiny. 
  
3. RESULTS AND DISCUSSION 
 
The explored QSAR model(s) using Dragon 
descriptors, in multi-descriptor class 
environment, may be utilized to correlate the 
biological actions shown by the compounds. The 
data set has been divided in training and test set 
comprising 33 and 10 compounds, respectively. 
Statistical models up to five descriptors have 
been derived using 89 significant descriptors 
(from 0D-, 1D- and 2D-classes) by CP-MLR 
analysis to correlate the 5-HT6 binding affinity. 
These models were identified in CP-MLR. In 
doing so successive increments were made in 
the filter-3 with increasing number of descriptors 
and the optimum r-bar value of the preceding 
level model was used as the new threshold of 
this filter for the next generation.  
 
The highest significant models in three, four and 
five variables (descriptors) are presented below. 

 
pKb  = 6.478+1.994(0.413)PW4+1.749(0.403)GATS8v+2.712(0.471)H-046  
n = 33, r = 0.768, s = 0.482, F = 13.953, FIT = 0.996, LOF = 0.305, AIC = 0.296,  
Q2

LOO = 0.503, Q2
L5O = 0.515, r2

randY(sd) = 0.101(0.070), r2
Test

 = 0.627                                          (6)  
 
pKb  = 4.157+2.283(0.421)X4v+4.619(0.615)BELm2+1.924(0.402)MATS7p 
          –1.575(0.354)H-052  
n = 33, r = 0.832, s = 0.424, F = 15.845, FIT = 1.293, LOF = 0.266, AIC = 0.244,  
Q2

LOO = 0.510, Q2
L5O = 0.530, r2

randY(sd) = 0.125(0.076), r2
Test

 = 0.557                                          (7)  
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 pKb  = 2.662–1.618(0.342)X2A+6.024(0.713)BELm2+1.583(0.424)GGI3+1.058(0.342)JGI2 
          +2.943(0.413)MATS7p  
n = 33, r = 0.861, s = 0.396, F = 15.607, FIT = 1.345, LOF = 0.264, AIC = 0.226,  
Q2

LOO = 0.606, Q2
L5O = 0.571, r2

randY(sd) = 0.161(0.085), r2
Test

 = 0.605                                          (8)  
 
In above models, the parenthesized values are 
the standard errors of the regression coefficients. 
The parameter r2

randY(sd) represents the mean 
random squared multiple correlation coefficient of 
the regressions in the activity randomization 
study with its standard deviation. In hundred  
simulation runs per model none of the identified 
models has shown any chance correlation. The 
inter-correlation among the predictor variables 
(inter-correlation matrix) of models presented 
above is provided in Table 3. The signs of 
numerical values of the regression coefficients 
propose the direction of influence of explanatory 
variables in the models. 
  
The participated descriptors PW4, X2A and X4v 
are from the TOPO class of Dragon descriptors. 
The TOPO class descriptors are numerical 
quantifiers of molecular topology represented 
graphically and are obtainable by the application 
of algebraic operators to matrices representing 
molecular graphs and whose values are 
independent of vertex numbering or labeling. 
These descriptors are sensitive to structural 
features of the molecule like size, shape, 
symmetry, branching, cyclicity and chemical 
information concerning atom type and bond 
multiplicity. The descriptor PW4 is the Randic 
shape index (Path/walk 4). Descriptors X2A and 
X4v are connectivity indices representing 
average connectivity index (chi-2) and valence 
connectivity index (chi-4), respectively. The 
positive correlation of descriptors PW4 and X4v 
to the activity advocates that higher values of 
these descriptors would be beneficiary to activity. 
On the other hand negative correlation of 
descriptor X2A to the activity suggests a lower 
value of it for elevated activity.    
 

The descriptors MATS7p and GATS8v belong to 
the 2D-AUTO class. The 2D-AUTO descriptors 
are the autocorrelation of topological structure of 
Broto-Moreau (ATS), of Moran (MATS) and of 
Geary (GATS). These descriptors deal with the 
topology of a molecular structure or parts thereof 
in association with a selected physicochemical 
property such as atomic mass, van der Waal’s 
volume, electronegativity and polarizability. In 
these descriptors’ nomenclature, the penultimate 
character, a number, indicates the number of 
consecutively connected edges considered in its 
computation and is called as the autocorrelation 
vector of lag k (corresponding to the number of 

edges in the unit fragment). The very last 
character of the descriptor’s nomenclature 
indicates the physicochemical property 
considered in the weighting component for its 
computation. Both of the participated descriptors, 
MATS7p (atomic polarizabilities weighted Moran 
autocorrelation of lag 7) and GATS8v (atomic 
van der Waals volumes weighted Geary 
autocorrelation of lag 8) correlated positively to 
the activity and suggest the favorable conditions 
associated with lag 7 weighted by atomic 
polarizabilities and lag 8 weighted by atomic van 
der Waal’s volumes.   
 

The descriptors H-046 and H-052 are from the 
ACF class of Dragon descriptors defined by 
Ghose and Crippen. These are simple molecular 
descriptors based on the counting of 120 atom 
centered fragments as the number of specific 
atom types in a molecule and evaluated by the 
knowledge of the molecular composition and 
atom connectivities. Descriptors H-046 represent 
the structural fragment in which H attached to 
C0(sp3) with no hetero atom (X) attached to next 
carbon atom and H-052 a fragment with H 
attached to C0(sp3) with one hetero atom (X) 
attached to next carbon atom. The descriptors H-
046 and H-052 have shown positive and 
negative correlation, respectively, to the activity 
advocating a structural fragment in which a 
hydrogen atom attached to sp3 hybridized carbon 
with no hetero atom rather than one hetero atom 
attached to next carbon atom supportive to the 
activity.  
 

Descriptors BELm2 is BCUT class descriptor. 
The first 8 highest and lowest absolute 
eigenvalues (BEHwk and BELwk) of the modified 
Burden adjacency matrix are represented by the 
BCUT descriptors, in which w refers to the 
atomic property and k to the eigenvalue rank. 
The relevant and useful aspects for similarity 
searching of molecular structure correspond to 
the ordered sequence of the highest and the 
lowest eigen values. The descriptor BELm2 
(atomic mass weighted lowest eigenvalue n.2 of 
Burden matrix) have shown positive correlation 
to the activity suggesting that a higher value of 
this descriptor is advantageous for activity. 
 
The descriptors GGI3 and JGI2 belong to 
GALVEZ class of Dragon descriptors. The 
GALVEZ descriptors are topological charge 
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indices representing the first ten eigenvalues of 
the polynomial of corrected adjacency matrix of 
the compounds. The first category of GALVEZ 
class descriptors corresponds to the topological 
charge index (GGIn) and the second to the mean 
topological charge index (JGIn). The order of 
eigenvalue is represent by ‘n’. Both the 
descriptors GGI3 (topological charge index of 
order 3) and JGI2 (mean topological charge 
index of order 2) have shown positive 
correlations to the activity suggesting that a 
higher value of these descriptors would augment 
the 5-HT6 binding activity of titled compounds. 
 

The above discussed models are able to explain 
74.13 percent variance in observed activity. 

Considering the number of observation in the 
dataset (33), models with up to six descriptors 
were explored. A total number of 24 models, 
sharing 29 descriptors among them, were 
obtained through CP-MLR. To serve as a 
measure of descriptors’ estimate across these 
models, the brief meaning, average regression 
coefficients and total incidence of all these 29 
descriptors is mentioned in Table 4. The given 
below is the highest significant six‐descriptor 
model for the activity. Table 3 contains the inter-
correlation matrix of variables of this model. This 
model has accounted for 76.91 percent variance 
in the observed activities.  

 
pKb  = 3.100+0.632(0.215)nBR+1.327(0.319)PW4–1.749(0.448)BEHm7+3.672(0.612)BELm2 
          +4.024(0.833)BEHe2+2.836(0.625)MATS7p  
 

n = 33, r = 0.877, s = 0.382, F = 14.452, FIT = 1.256, LOF = 0.284, AIC = 0.225,  
Q2

LOO = 0.654, Q2
L5O = 0.664, r2

randY(sd) = 0.177(0.092), r2
Test

 = 0.546                                          (9)  
 

No any chance correlation has been observed for the above model in the randomization study. This 
model is a reasonable robust QSAR model as evinced from the Q2-index values greater than 0.5. The 
pKb values of training set compounds have been calculated using Equation (9) and are   mentioned in 
Table 1. This model has further validated externally with test set of ten compounds (Table 1). The 
value greater than 0.5 of test set r2 (r2

Test) reflects that the predictions of the test set compounds are 
satisfactory. The predicted activities of test set compounds are also given in Table 1. The goodness of 
fit between observed and calculated activities for the training and test set compounds is shown in     
Fig. 1. 
 

Table 2. Dragon descriptor classesa used along with their definition and scope for modeling 
the binding affinity of tryptamine derivatives 

 
Descriptor class (acronyms) Definition and scope 
Constitutional  
(CONST)  

Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

Topological  
(TOPO)  

2D-descriptor from molecular graphs and independent 
conformations  

Molecular walk counts  
(MWC)  

2D-descriptors representing self-returning walks counts of 
different lengths 

Modified burden eigenvalues  
(BCUT)  

2D-descriptors representing positive and negative eigenvalues of 
the adjacency matrix, weights the diagonal elements and atoms 

Galvez topological charge 
indices (GALVEZ)  

2D-descriptors representing the first 10 eigenvalues of corrected 
adjacency matrix 

2D-autocorrelations  
(2D-AUTO)  

Molecular descriptors calculated from the molecular graphs by 
summing the products of atom weights of the terminal atoms of all 
the paths of the considered path length (the lag) 

Functional groups  
(FUNC)  

Molecular descriptors based on the counting of the chemical 
functional groups  

Atom centered fragments  
(ACF) 

Molecular descriptors based on the counting of 120 atom centered 
fragments, as defined by Ghose-Crippen 

Empirical 
(EMP)  

1D-descriptors represent the counts of non-single bonds, 
hydrophilic groups and ratio of the number of aromatic bonds and 
total bonds in an H-depleted molecule  

Properties (PROP) 1D-descriptors representing molecular properties of a molecule 
aReference [28] 
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Table 3. Intercorrelation matrix amongst independent variables of equations (6)-(9) 
 

Eq. (6) PW4 GATS8v H-046    
PW4 1.000      
GATS8v 0.013 1.000     
H-046 0.204 0.286 1.000    
Eq. (7) X4v BELm2 MATS7p H-052   
X4v 1.000      
BELm2 0.291 1.000     
MATS7p 0.198 0.412 1.000    
H-052 0.217 0.023 0.171 1.000   
Eq. (8) X2A BELm2 GGI3 JGI2 MATS7p  
X2A  1.000      
BELm2 0.048 1.000     
GGI3 0.008 0.213 1.000    
JGI2 0.073 0.103 0.061 1.000   
MATS7p 0.013 0.412 0.000 0.000 1.000  
Eq. (9) nBR PW4 BEHm7 BELm2 BEHe2 MATS7p 
nBR 1.000      
PW4 0.135 1.000     
BEHm7 0.186 0.024 1.000    
BELm2 0.228 0.116 0.262 1.000   
BEHe2 0.055 0.025 0.276 0.011 1.000  
MATS7p 0.408 0.089 0.021 0.412 0.420 1.000 

aThe matrix elements are the r2-values 
 
The descriptors PW4, MATS7p and BELm2, 
which were emerged in models discussed earlier, 
have once again shown their importance in this 
six parameter model and convey same 
inferences to the activity. The newly emerged 
BCUT class descriptors are BEHm7 (the highest 
eigenvalue n.7 of atomic masses weighted 
Burden Matrix) and BEHe2 (the highest 
eigenvalue n.2 of atomic Sandersons 
electronegativities weighted Burden Matrix). The 
negative and positive signs of regression 
coefficients of descriptors BEHm7 and BEHe2, 
respectively, suggest that a lower value of 
descriptor BEHm7 and a higher value of 
descriptor BEHe2 would be beneficial to enhance 
the activity. 
 
The remaining descriptor nBR, representing 
number of bromine atoms, is from CONST class. 
The positive correlation of it to the activity 
advocates that presence of more number of 
bromine atoms in a molecular structure is 
advantageous for the binding affinities of 
tryptamine derivatives. Thus the descriptors 
identified for rationalizing the activity may offer 
opportunities to modulate the structure to a 
desirable biological end point. Equation (9) has 
further been used to explore some new 
tryptamine derivatives as 5-HT6 receptor ligands. 
The potential structural variations and predicted 

activity values using Eq. (9) for these compounds 
are given in Table 6. 
 

A PLS (partial least squares) analysis [41-43] 
has been carried out on the 13 descriptors which 
were emerged in Eqs. (6) to (9) to recognize their 
potential in explaining the 5-HT6 receptor binding 
affinities of tryptamine derivatives. This analysis 
also provides an opportunity to make a 
comparison of the relative significance among 
the descriptors. The fraction contributions 
obtainable from the normalized regression 
coefficients of the descriptors allow this 
comparison within the modeled activity. The 
descriptors have been autoscaled (zero mean 
and unit s.d.) to give each one of them equal 
weight in the PLS analysis. The PLS cross-
validation found three components to be the 
optimum for these 13 descriptors and 75.52% 
variance in the activity has been explained by 
them. 
 

The MLR‐like PLS coefficients of these 
descriptors are given in Table 5. The calculated 
activity values of training and test set compounds 
are in close agreement to that of the observed 
ones (Table 1). The comparison of goodness of 
fit between observed and calculated activities of 
the training and test set compounds (through 
PLS analysis) is also presented in Fig. 1. The 
plot of the fraction contribution of normalized 
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regression coefficients of these descriptors to the 
activity is shown in Fig. 2. 
 
The BCUT class descriptor BELm2 emerged as 
the most determining descriptor for modeling the 
5-HT6 binding activity of the titled compounds in 

PLS analysis. The other descriptors in 
decreasing order of significance are H-046, 
GATS8v, PW4, nBR, X4v, BEHm7, H-052, 
MATS7p, JGI2, GGI3, BEHe2 and X2A (Table 5; 
Fig. 2).  
   

 
Table 4. Descriptorsa identified for modeling the binding affinity of tryptamine derivatives 
along with the average regression coefficientb, standard deviation and the total incidence 

 
No Descriptor Physical meaning (Class)  Avg reg coeff 

(sd)  incidence 
 1  RBN Number of rotatable bonds (CONST)    -2.174(0.629)9 
 2  nCL Number of chlorine atoms (CONST)    1.782(0.000)1;  

   -1.121(0.000)1 
 3  nBR Number of bromine atoms (CONST)    0.570(0.139)7 
 4  SPI Superpendentic index (TOPO)    -1.180(0.239)4 
 5  TI2 Second Mohar index (TOPO)    -1.361(0.147)7 
 6  X2A Average connectivity index chi-2 (TOPO)     -1.554(0.348)4 
 7  PW4 Path/walk 4- Randic shape index (TOPO)    1.740(0.190)9 
 8  DECC Eccentric (TOPO)    -1.606(0.000)1 
 9  BEHm7 Highest eigenvalue n. 7 of Burden matrix/ weighted by atomic 

masses (BCUT) 
   -1.620(0.136)4 

10 BEHm8 Highest eigenvalue n. 8 of Burden matrix/ weighted by atomic 
masses (BCUT) 

   -0.910(0.171)3 

11  BELm2 Lowest eigenvalue n. 2 of Burden matrix/ weighted by atomic 
masses (BCUT) 

   3.925(1.126)18 

12   BELm6 Lowest eigenvalue n. 6 of Burden matrix/ weighted by atomic 
masses (BCUT) 

   0.707(0.000)1 

13  BEHv5 Highest eigenvalue n. 5 of Burden matrix/ weighted by atomic 
van der Waals volumes (BCUT) 

   -0.891(0.230)3 

14   BEHv6 Highest eigenvalue n. 6 of Burden matrix/ weighted by atomic 
van der Waals volumes (BCUT) 

   -0.814(0.221)5 

15   BELv3 Lowest eigenvalue n. 3 of Burden matrix/ weighted by atomic 
van der Waals volumes (BCUT) 

   1.082(0.000)1 

16  BEHe2 Highest eigenvalue n. 2 of Burden matrix/ weighted by atomic 
Sanderson electronegativities (BCUT) 

   5.281(1.247)4 

17  GGI2 Topological charge index of order 2 (GALVEZ)    1.819(0.622)4 
18  GGI3 Topological charge index of order 3 (GALVEZ)    1.239(0.063)3 
19  GGI10 Topological charge index of order 10 (GALVEZ)    -2.247(0.619)2 
20  JGI2 Mean topological charge index of order 2 (GALVEZ)    1.133(0.297)2 
21  JGI3 Mean topological charge index of order 3 (GALVEZ)    1.246(0.233)4 
22  MATS5m Moran autocorrelation - lag 5 / weighted by atomic masses  

(2D-AUTO) 
   0.974(0.000)1;  
-1.066(0.000)1 

23  MATS8m Moran autocorrelation - lag 8 / weighted by atomic masses 
(2D-AUTO) 

 -1.878(0.742)13 

24  MATS7p Moran autocorrelation - lag 5 / weighted by atomic 
polarizabilities (2D-AUTO) 

   2.563(1.062)14 

25  GATS2v Geary autocorrelation - lag 2 / weighted by atomic van der 
Waals volumes (2D-AUTO) 

   -1.107(0.000)1 

26  GATS8p Geary autocorrelation - lag 8 / weighted by atomic 
polarizabilities (2D-AUTO) 

   1.414(0.340)2 

27  C-008 CHR2X (ACF)    -0.792(0.201)4 
28  H-046 H attached to C0(sp3) with no X attached to next C (ACF)    2.479(0.384)6 
29  H-052 H attached to C0(sp3) with 1X attached to next C (ACF)    -0.963(0.359)5 

aThe descriptors are identified from the five parameter models emerged from CP-MLR protocol with filter-1 as 
0.79; filter-2 as 2.0; filter-3 as 0.83; filter-4 as 0.3 ≤ Q2 

≤ 1.0; number of compounds in the study are 33 
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Fig. 1. Plot of observed versus calculated pKb values of the 1-aryl sulfonyl tryptamines 
 

 
 

Fig. 2. Plot of fraction contribution of MLR-like PLS coefficients (normalized) of the 13 
descriptors (Table 5) to the activity 
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Table 5. PLS and MLR-like PLS models from the descriptors of Eqs. 6-9 for the 5-HT6 binding 
affinity 

  
A: PLS equation 
PLS components PLS coefficient (s.e.)a 
Component-1 -0.521(0.060) 
Component-2 -0.130(0.041) 
Component-3 -0.109(0.047) 
Constant  8.992 
B: MLR-like PLS equation 
S. No. Descriptor  MLR-like coefficient (f.c.)b order  
1 nBR 0.346(0.113) 5 
2 X2A -0.029(-0.009) 13 
3 X4v 0.250(0.081) 6 
4 PW4 0.353(0.115) 4 
5 BEHm7 -0.205(-0.067) 7 
6 BELm2 0.604(0.197) 1 
7 BEHe2 0.035(0.011) 12 
8 GGI3 0.051(0.016) 11 
9 JGI2 0.067(0.021) 10 
10 MATS7p 0.132(0.043) 9 
11 GATS8v 0.375(0.122) 3 
12 H-046 0.432(0.141) 2 
13 H-052 -0.177(-0.57) 8 
 Constant  5.489  
C: PLS regression statistics Values  
n 33 
r 0.869 
s 0.372 
F 29.932 
Q2

LOO 0.672 
Q2

L5O 0.687 
r2

Test 0.522 
aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of 

descriptors for their original values; f.c. is fraction contribution of regression coefficient, computed from the 
normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data 

 
Table 6. The structures and predicted activity of compounds based on QSAR model Equation 

(9) 

N

R1

S

O

O

R2

R3

 
 

Cpd. R1 R2 R3 pKb 
1 F 

N
Br

 

3-C2H5 11.37 

2 F 
N

Br

 

3-OCH3 10.19 
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Cpd. R1 R2 R3 pKb 
3 Br 

N
Br

 

3-OCH3 10.52 

4 F 
N

Br

 

3-CH(CH3)2 12.83 

5 Br 
N

Br

 

3-CH(CH3)2 13.25 

6 OCH3 
N

Br

 

3-OCH3 9.42 

7 OC2H5 
N

Br

 

3-CH(CH3)2 12.13 

8 OCH(CH3)2 
N

Br

 

3-CH(CH3)2 12.03 

9 F 
N

Br

 

3-OCH3 10.16 

10 F 
N

Br

 

3-CH(CH3)2 12.26 

     
 4. CONCLUSIONS 
 
In conclusion, the present study has provided 
structure–activity relationships of the binding 
affinities of tryptamine derivatives to 5-HT6 
receptor in terms of structural requirements. The 
binding affinity has, therefore become the 
function of the cumulative effect of different 
structural features which were identified in terms 
of individual descriptors.  
  
In order to improve the 5-HT6 receptor binding 
affinity of a compound higher value of molecular 
topology and symmetry accounting Randic shape 
index descriptor PW4 (path/walk 4) is favorable. 
Presence of more number of bromine atoms 
(descriptor nBR)  and presence of such structural 
fragment in which a hydrogen atom attached to 
sp3 hybridized carbon with no hetero atom rather 
than one hetero atom attached to next carbon 
atom (descriptors H-046 and H-052) will be 
supportive to the activity. 
 
The associations of polarizability to the path 
length 7 of Moran autocorrelation (MATS7p), 
masses to eigenvalues n.2 and 7 of Burden 

matrix (BELm2 and BEHm7), Sanderson 
electronegativity to highest eigenvalue n.2 
Burden matrix (BEHe2) and van der Waals 
volume to  path length 8 of Geary autocorrelation 
(GATS8v) have shown the prevalence of atomic 
properties and charge content in terms of 
topological and mean topological charge indices 
(GGI3 and JGI2) to explain the binding affinity. 
The dominance of the information content of the 
descriptors, emerged in CP-MLR models, has 
also confirmed by the PLS analysis.  
 
The derived QSAR models and descriptors 
shared in these models revealed that the 
substituents of tryptamine moiety have sufficient 
scope for further modification. 
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