
American Journal of Computational Mathematics, 2017, 7, 391-401 
http://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2017.74028  Oct. 26, 2017 391 American Journal of Computational Mathematics 
 

 
 
 

Second Kind Shifted Chebyshev Polynomials for 
Solving the Model Nonlinear ODEs 

Amr M. S. Mahdy1,2, N. A. H. Mukhtar3 

1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt 
2Department of Mathematics, Faculty of Science, Taif University, Taif, KSA 
3Department of Mathematics, Faculty of Science, Benghazi University, Benghazi, Libya 

           
 
 

Abstract 
In this paper, we build the integral collocation method by using the second 
shifted Chebyshev polynomials. The numerical method solving the model 
non-linear such as Riccati differential equation, Logistic differential equation 
and Multi-order ODEs. The properties of shifted Chebyshev polynomials of 
the second kind are presented. The finite difference method is used to solve 
this system of equations. Several numerical examples are provided to confirm 
the reliability and effectiveness of the proposed method. 
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1. Introduction 

In recent years, Chebyshev polynomials (family of orthogonal polynomials on 
the interval [−1, 1]) have become increasingly important in numerical analysis, 
from both theoretical and practical points of view. They have strong links with 
Fourier and Laurent series, with minimality properties in approximation theory 
and with discrete and continuous orthogonality in function spaces [1]. These 
links have led to important applications, especially in spectral methods for ordi-
nary and partial differential equations. There are four kinds of Chebyshev poly-
nomials as in [2]. The majority of books dealing with Chebyshev polynomials, 
contain mainly results of Chebyshev polynomials of all kinds ( ) ( ) ( ), ,n n nT x U x V x  
and ( )nW x  and their numerous uses in different applications and research pa-
pers dealing with some types of these polynomials ([3]-[8]) and other publica-
tions as ([9] [10] [11] [12] [13]). However, there are only a limited researches of 
literature on shifted Chebyshev polynomials of the second kind ( )nU x∗ , either 
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from theoretical or practical points of view it uses in various applications. 

2. Some Properties of Chebyshev Polynomials of the  
Second Kind 

2.1. Chebyshev Polynomials of the Second Kind ([2] [14]) 

The Chebyshev polynomials ( )nU x  of the second kind [2] are orthogonal 
polynomials of degree n in x defined on the [−1, 1]  

( ) ( )sin 1
sinn

n
U x

θ
θ
+

=  

where cosx θ=  and [ ]0,πθ ∈ . The polynomials ( )nU x  are orthogonal on 
[ ]1,1−  with respect to the inner products 

( ) ( )( ) ( ) ( )1 2
1

0,
, 1 d π ,

2
n m n m

n m
U x U x x U x U x x

n m−

≠
= − = 

=
∫          (1) 

where 21 x−  is weight function. 
( )nU x  may be generated by using the recurrence relations 

( ) ( ) ( )1 22 , 2,3,n n nU x xU x U x n− −= − =   

with ( )0 1U x = , ( )1 2U x x= . 
The analytical form of the Chebyshev polynomials of the second kind ( )nU x  

of degree n is given by: 

( ) ( ) ( ) ( ) ( )
( ) ( )

π π
22 2

2 2

0 0

1
1 2 1 2 , 0.

1 2 1

n i
i n i i n i

n
i i

n i n i x
U x x n

i i n i

   
    −   − −

= =

− Γ − + 
= − = − >  Γ + Γ − + 
∑ ∑  (2) 

where π
2
 
  

 denotes the integral part of 2n . 

2.2. Shifted Chebyshev Polynomials of the Second Kind ([2] [14]) 

In order to use these polynomials in Section 2.1 on the interval [ ]0,1x∈  we 
define the so called shifted Chebyshev polynomials of the second kind ( )nU x∗  
by introducing the change variable 2 1z x= − . This means that the shifted 
Chebyshev polynomials of the second kind defined as ([2] [14]): 

( ) ( )2 1n nU x U x∗ = −  

also there are important relation between the shifted and second kind Chebyshev 
polynomials as follows: 

( ) ( )2
1 2 12 ,n nxU x U x∗
− −=  

these polynomials are orthogonal on the support interval [ ]0,1  as the following 
inner product: 

( ) ( )( ) ( ) ( )1 2
0

0, ,
, d π , ,

8
n m n m

n m
U x U x x x U x U x x

n m
∗ ∗ ∗ ∗

≠
= − = 

=
∫         (3) 
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where 2x x−  is weight function. 
( )nU x∗  may be generated by using the recurrence relations 

( ) ( ) ( ) ( )1 22 2 1 , 2,3,n n nU x x U x U x n∗ ∗ ∗
− −= − − =   

with start values ( )0 1U x∗ = , ( )0 4 2U x x∗ = − . 
The analytical form of the shifted Chebyshev polynomials of the second kind 
( )nU x∗  of degree n  is given by 

( ) ( ) ( )
( ) ( )

2 2

0

2 2
1 2 , 0,

1 2 2 2

n in i n i
n

i

n i x
U x n

i n i

−
∗ −

=

Γ − +
= − >

Γ + Γ − +∑          (4) 

The function which may be appear in solution of the model problem can be 
written as series of ( )U x∗ . 

Let ( )g x  be a square integrable in [ ]0,1  it can be expressed in terms of the 
shifted Chebyshev polynomials of the second kind as follows: 

( ) ( )
0

,i i
i

g x aU x
∞

∗

=

= ∑                         (5) 

where the coefficients , 0,1,ia i =   are given by: 

( )1 2
1

2 1 1 d ,
π 2i i

xa g x U x x
−

+ = − 
 ∫                   (6) 

or 

( ) ( )1 2
0

8 d ,i ia g x x x U x x
π

∗= −∫                    (7) 

In practice, only the first ( )1m +  terms of shifted Chebyshev polynomials of 
the second kind are considered in the approximate case. Then we have: 

( ) ( )
0

,
m

m i i
i

g x a U x∗

=

= ∑                         (8) 

Using the parctice shifted Chebyshev polynomials of the second kind to 
constraction the integral collocation method to give the N-th derivative of the 
unknown function ( )u x  as the following [15]: 

( ) ( ) ( )
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=∑ ∑                  (9) 

Using the integration we can obtain the lower-order derivatives and the 
function itself as follows 
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from (4) and (9) we have 
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We now collocate Equatuions (10)-(14) at ( )1m +  points , 0,1, ,px p m=   
as 

( ) ( ) ( ) ( )
1

1
1
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d d
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( ) ( ) ( ) ( )1 0d ˆ ˆ, ,
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p
p
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where [ ]T0 1 1 2
ˆ , , , , , , ,m nE a a a c c c=   , and ( ) ( ) ( )1 0, , ,k k−Ω Ω Ω  are integrated 

matrices. 

3. Integral Collocation Method for Solving Riccati, Logistic  
and Multi-Order Nonlinear ODEs [15] 

In this section, we introduce the integral collocation method using shifted 
Chebyshev polynomials of the second kind for solving the Riccati, Logistic and 
multi-order nonlinear ODEs. 

3.1. Model 1: Riccati Differential Equation [15] 

( ) ( )2d
1 0, 0,

d
u x

u x x
x

+ − = ≥                   (16) 

we also assume an initial condition 

( ) 0.u x u=                           (17) 

The exact solution to this problem at 0 0u =  is 

( )
2

2

e 1.
e 1

x

xu x −
=

+
 

The procedure of the implementation is given by the following steps: 
1) Approximate the function ( )u x  using formula (9)-(14) with 5m = , as 

follows 

( ) ( ) ( )
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d
,
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( ) ( ) ( )
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where ( ) ( )0
nw x  is defined in (14) as 
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Then the Riccati differential Equation (16) is transformed to the following 
approximated form 

( ) ( ) ( )
25 5

0
1

0 0
1n n n n

n n
a U x a w x c∗

= =

 + + = 
 

∑ ∑                (19) 

We now collocate Equation (19) at ( )1 6m + =  points , 0,1, 2,3, 4,5px p =  
as 

( ) ( ) ( )
25 5

0
1

0 0
1n n p n n p

n n
a U x a w x c∗

= =

 + + = 
 

∑ ∑              (20) 

For suitable collocation points we use the roots of shifted Chebyshev 
polynomial ( )6U x∗ . 

2) Also, by substituting from the initial condition (17) in (18) we can obtain 
( )1n =  an equation which gives the value of the constant 1c  as follows 

0
1 0.c u= =                           (21) 

Equations (20) and (21) represent a system of non-linear algebraic equations 
which contains seven equations for the unknowns , 0,1, 2,3, 4,5na n =  and 1c . 

3) Solve the resulting system using the Newton iteration method to obtain the 
unknowns , 0,1, 2,3, 4,5ia i =  as follows 

0 1 20.76160, 0.31790, 0.0506,a a a= = − = −  

3 4 50.02896, 0.00111, 0.00112,a a a= = − = −  

Therefore, from Formula (19) we can obtain the approximate solution in the form 

( ) ( ) ( )
5

0
1

0
n n

n
u x a w x c

=

+∑  

( ) 2 3 4 5 60.990 0.002 0.346 0.027 0.125 0.047 .u x x x x x x x= + − + + −  

The numerical results of the proposed problem (16) are given in Figure 1 with 
5m =  in the interval [ ]0,1  at 0 0u = .  

From this Figure 1, since the obtained numerical solutions are in excellent 
agreement with the exact solution, so, we can conclude that the proposed 
technique is well for solving such class of ODEs. 

3.2. Model 2: Logistic Differential Equation [15] 

( ) ( ) ( )( )d
1 , 0, 0.

d
u x

u x u x x
x

ρ ρ= − > >              (22) 
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Figure 1. The behavior of the approximate solution and exact solution 
with m = 5. 

 
We also assume an initial condition 

( ) 0 00 0.85, 0.u u u= = >                    (23) 

The exact solution to this problem is given by 

( )
( )

0

0 0

.
1 e x

u
u x

u uρ−=
− +

 

The procedure of the implementation is given by the following steps: 
1) Approximate the function ( )u x  using formula (9)-(14) with 5m =   
Then the Logistic differential Equation (22) is transformed to the following 

approximated form 

( ) ( ) ( ) ( ) ( )
5 5 5

0 0
1 1

0 0 0
1 0.n n n n n n

n n n
a U x a w x c a w x cρ∗

= = =

    − + − + =    
    

∑ ∑ ∑      (24) 

We now collocate Equation (24) at ( )1 6m + =  points , 0,1, 2,3, 4,5px p =  as 

( ) ( ) ( ) ( ) ( )
5 5 5

0 0
1 1

0 0 0
1 0.n n p n n p n n p

n n n
a U x a w x c a w x cρ∗

= = =

    − + − + =    
    

∑ ∑ ∑    (25) 

For suitable collocation points we use roots of shifted Chebyshev polynomial 
( )6U x∗  

0 10.96623, 0.03377,x x= =  

2 30.38069, 0.61930,x x= =  

4 50.16931, 0.83060,x x= =  
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2) Also, by substituting from the initial condition (23) in (18) with 0 0.85u =  
we can obtain ( )1k =  an equation which gives the value of the constant 

1 0.85c = . 
Equation (25) represents a system of non-linear algebraic equations which 

contains six equations for the unknowns , 0,1, 2,3, 4,5na n = . 
3) Solve the resulting system using the Newton iteration method to obtain the 

unknowns , 0,1, 2,3, 4,5na n =  as follows 

0 1

2 3
6 8

4 5

0.0533, 0.0101,
0.0004, 0.00002,

1.642 10 , 5.398 10 .

a a
a a

a a− −

= =

= =

= − × = ×

               (26) 

Therefore, from Formula (18) we can obtain the approximate solution in the 
form 

( ) ( ) ( )
5

0
1

0
n n

n
u x a w x c

=

+∑  

( ) 2 3 4 5

6 7 8

1 0.5 0.1667 0.0417 0.0083

0.0014 0.0002 0.00004

u x x x x x x

x x x

= + + + + +

+ + +
 

The numerical results of the proposed problem (22) is given in Figure 2 with 
5m =  in he interval [0, 1].  

From this Figure 2, since the obtained numerical solutions are in excellent 
agreement with the exact solution, so, we can conclude that the proposed 
technique is well for solving such class of ODEs. 

 

 
Figure 2. The behavior of the approximate solution and exact solution 
with m = 5. 
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3.3. Model Multi-Order Nonlinear ODEs ([16] [17]) 

Consider the following initial value problem ([16] [17]) 

( ) ( )3 2 42D y x y x x+ =                       (27) 

the initial conditions are: 

( ) ( ) ( )0 0 0, 0 2y y y′ ′′= = =                    (28) 

1) Approximate the function ( )y x  and its relevant derivatives with 3k =  

( ) ( ) ( ) ( )
3 3 3

3
3

0 0

d
d k k n n

n n

y x
a p x a w x

x = =

=∑ ∑                 (29) 
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2
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d
d n n

n

y x
a w x c

x =
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3

1
1 2

0

d
.

d n n
n

y x
a w x xc c

x =

+ +∑  

( ) ( ) ( )
23

0
1 2 3

0
.

2n n
n

xy x a w x c xc c
=

+ + +∑  

where ( ) ( ) ( ) ( )0 1,n nw x w x  and ( ) ( )2
nw x  are defined as follows 

( ) ( ) ( ) ( )
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0 2 2
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2 2
1 2

1 2 2 2

n in i n i
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i

n i x
w x

i n i

−
−

=

Γ − +
= −

Γ + Γ − +∑  

( ) ( ) ( ) ( )
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1
1 2 2

0

2 2
1 2 ,

1 2 2 2 1

n in i n i
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i

n i x
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i n i n i

− +
−

=

Γ − +
= −

Γ + Γ − + − +∑  

( ) ( ) ( ) ( )
( ) ( )( )( )

2
2 2 2

0

2 2
1 2 ,

1 2 2 2 1 2

n in i n i
n

i

n i x
w x

i n i n i n i

− +
−

=

Γ − +
= −

Γ + Γ − + − + − +∑  

Then the multi-order ODE (27) can be written in the following approximated 
form 

( ) ( ) ( )
223 3

0 4
1 2 3

0 0
2

2k k n n
n n

xa p x a w x c xc c x
= =

 
+ + + + = 
 

∑ ∑          (30) 

We now collocate Equation (30) at ( )1k +  points , 0,1, 2,3px p =  as 

( ) ( ) ( )
223 3

0 4
1 2 3

0 0
2

2
p

k k p n n p p p
n n

x
a p x a w x c x c c x

= =

 
+ + + + =  
 

∑ ∑        (31) 

For suitable collocation points we use roots of shifted Chebyshev polynomial 
( )4p x  

2) Also, by substituting from the initial conditions (28) in (29) we can obtain 
3k =  of equations which give the values of the constants 1 2,c c  and 3c . 

1 2 32, 0, 0.c c c= = =                      (32) 

The Equations (31) and (32) construct system of non-linear algebraic 
equations which contains seven equations for the unknowns , 0,1, 2,3na n =  
and , 1, 2,3ic i =  

3) Solve the resulting system using the Newton iteration method to obtain the 
unknowns , 0,1, 2,3nb n = . 

https://doi.org/10.4236/ajcm.2017.74028


A. M. S. Mahdy, N. A. H. Mukhtar 
 

 

DOI: 10.4236/ajcm.2017.74028 399 American Journal of Computational Mathematics 
 

Therefore, using the formula (29) we can find the required approximate 
solution in the following form: 

( ) ( ) ( )
23

0 2
1 2 3

0
.

2n n
n

xy x a w x c xc c x
=

+ + + =∑  

which is the exact solution of the proposed problem (27). 
The numerical results of the proposed problem (27) are given in Figure 3 with 

5m =  in the interval [ ]0,10 . From this Figure 3, since the obtained numerical 
solutions are in excellent agreement with the exact solution, so, we can conclude 
that the proposed technique is well for solving such class of ODEs. 

4. Conclusion 

In this paper, the Chebyshev polynomials of the second kind has been 
successfully applied to study the model nonlinear ODEs. The results show that 
Chebyshev polynomials of the second kind is an efficient and easy-to-use 
technique for finding exact and approximate solutions for nonlinear ordinary 
differential equations. The obtained approximate solutions using the suggested 
method is in excellent agreement with the exact solution and show that these 
approaches can be solved the problem effectively and illustrates the validity and 
the great potential of the proposed technique. 
 

 
Figure 3. The behavior of the approximate solution with m = 5. 
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