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ABSTRACT

The behaviour of a system of two two-level atoms, both identical as well as non-identical,
under the influence of a continuously varying dipole-dipole coupling parameter for a wide
range of other parameters such as the atomic level separations and the coupling strength of
the external radiation field is explored. A detailed analysis of the behaviour of various level
populations and some of the atomic coherences is presented. The influence of the
competing effects between the Rabi field strength and the dipole-dipole interaction on the
two photon absorption probability is explored in detail both for identical as well as non-
identical atoms. There are significant variations in the behaviour of identical and non-
identical atoms as a function of the dipole coupling strength, even for small amounts of non-
identity of the atoms, which in this study is incorporated through the atomic level
separations. Numerical results of one of the measures of entanglement, namely the
concurrence are presented.
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1. INTRODUCTION

Cooperative effects [1], for example collective emission, are a general characteristic of
macroscopic systems consisting of a large number of atoms confined in a region of space
much smaller than an optical wavelength. When treating a system of many atoms, the net
force on any single atom is computed as a sum of interactive forces with all other atoms, one
by one. Coherent addition of all these inter-atomic interactions gives rise to cooperative
phenomena. Therefore the model for collective, macroscopic behaviour of the entire system
can be built in terms of a basic building block involving interaction between a pair of atoms.
Two of the most common interactions of this kind are dipole-dipole and Van der Waal’s.
Dipole-dipole interaction exists between two atoms wherein one of them is in an excited level
and the other is in one of the lower lying levels in its manifold and in addition transition
between the excited and lower levels of each atom needs to be dipole allowed. In such a
case, the two atoms non-radiatively exchange energy leading to an effective interaction
potential. Though Van der Waal’s interaction is present between two atoms in identical
states, it can be understood as a non-radiative energy exchange between the spin states of
the atoms, leading to a mathematical frame work almost identical to that of dipole-dipole
interaction. While a fully quantum mechanical picture describes the energy exchange
phenomena more effectively, such an approach becomes cumbersome as the total number
of atoms increases. With this in mind, we present a detailed study using semi classical
approach wherein the interaction is represented by a coupling factor between relevant
atomic states. In this particular communication, we concentrate on dipole-dipole interaction
between two identical as well as two non-identical atoms, and present results of the effect of
the dipole-dipole interaction on the behaviour of the atomic system.

A large amount of work exists that study cooperative effects among few atoms, resulting
from pairwise dipole-dipole interactions [1-10], each showing one of the several outcomes of
the dipole-dipole interactions. For example, new resonance fluorescence peaks that arise
due to dipole-dipole interactions [11], suppressions of existing fluorescence peaks [12],
modifications of transition rates and level shifts, thus giving rise to significant changes in the
multiple jump dynamics [13] have been reported. More recently, entanglement between the
atom pair arising due to dipole-dipole interactions [14] and their subsequent evolution [15] is
studied. Dipole - dipole interaction between Rydberg atoms, which are stronger due to the
large dipole moments [16-18], application of this to quantum computation schemes [19],
have also generated much interest. There exist several other physical phenomena which
have the same dynamics as that of two two-level atoms, such as modes in ring cavities,
quantum dots, excitons in plasmonic waveguides etc. Several of them also show similar
coupling mechanisms where a resonant energy transfer between any two entities exists. All
of them can be solved with the same mathematical formalism shown here and will probably
show similar behaviour as well, under the appropriate limits. Despite the large amount of
work that already exists in literature, it can be stated that an understanding of the dipole-
dipole interaction effects is far from complete.

In one of the early studies carried out by Varada and Agarwal [20], the presence of dipole-
dipole interaction induced two-photon resonance for the case of non-identical atoms is
reported. Part of this present work is an extension of this work, at first confirming these
results and then extending to newer regions which were unexplored in the previous work. In
particular, the dipole interaction induced two-photon resonance in a wider parameter regime
is seen to exhibit anomalous behaviour. It increases at first up to a certain value of the dipole
coupling strength and for further increase in this parameter, it begins to decrease. It would
be of interest to explore the signature of this anomalous behaviour on the entanglement



Physical Science International Journal, 4(4): 591-605, 2014

593

characteristics of this system. The work in this paper addresses these questions in
particular.

The organization of this paper is as follows. In Sec. 2, we present the mathematical
formulation of the problem. Master equation method [21] for the evolution of the density
operator, in the semi-classical approximation, is employed in the present study. The resulting
density matrix equations after the usual rotating wave approximation are solved numerically
for an extensive parameter regime. In section 3, numerical results of various quantities are
presented for a wide choice of parameters, both for identical as well as non-identical atoms.
It is seen that a small deviation from identity of the atoms gives rise to significant changes in
the behaviour of the system.

2. THE MODEL

We consider two isolated two level atoms fixed in position with a separation , driven by a
single mode resonant laser field, of frequency (wavelength ), which is nearly resonant
with the transition frequency of one of the atoms, in the region ≪ . Here| ⟩ and | ⟩ are
respectively the ground and excited states of the atom ( = 1,2).  The interaction with the
field induces dipole moment in the atoms, which in turn interact with each other via photon
exchange.  In our model it is assumed that the external field is propagating perpendicular to
the inter-atomic axis so that the interaction of field with the atoms is purely symmetric.

Several theoretical approaches can be used to treat the system of two atoms interacting with
the radiation field. One of the more preferred among these is the master equation approach,
which enables one to treat the evolution of the atom plus field system entirely in terms of the
atomic operators. The master equation which governs the dynamics of the density
operator of the two atom system is given by= − ∑ ∆ [ , ] − ∑ Ω , + Ω ∑ [ + , ] − ℒ (2.1)

where the last term ℒ = 12 Γ ( + − 2 ),
represents the decay of the atomic system. Here = | ⟩⟨ | and = | ⟩⟨ | are the raising
and lowering operators, = (| ⟩⟨ | − | ⟩⟨ |) is the energy operator of the atom
and Γ = Γ are the spontaneous decay rates.

The parameters Ω and Γ ( ≠ ) which describe the dipole-dipole interaction and the
collective damping respectively are both functions of the distance between the atoms and
are given by
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and the decay term
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where ‘ ’ is the angle between the dipole moment ⃗ and the interatomic separation ⃗ . Here,
we assume, with no loss of generality, that the atomic dipole moments are parallel to each
other and are polarized in a direction perpendicular to the inter-atomic axis, i.e., ⃗ = ⃗ = ⃗
and ⃗ ⊥ ⃗ .

The wave number = , where = , is the atomic transition frequency of atom1
and is the atomic transition frequency of atom2.

The density operator of the two-atom system can be represented in a complete set of basis
states spanned by four product states, which is usually referred to as the standard basis, the
elements of which are defined as |1⟩ = |g ⟩ ⊗ |g ⟩|2⟩ = |e ⟩ ⊗ |g ⟩|3⟩ = |g ⟩ ⊗ |e ⟩|4⟩ = |e ⟩ ⊗ |e ⟩ (2.4)

A schematic of this level scheme is shown in Fig. 1.

Fig. 1. Schematic energy level diagram of two identical two-level atoms as an
equivalent four-level system in product basis

However, since the dipole-dipole interaction Ω couples the two atoms, when describing the
evolution of such a system, the standard basis is usually not the most convenient basis to
work with.  In this case, it is more convenient to include the dipole-dipole interaction into the
Hamiltonian and re-diagonalize it, giving rise to a different set of basis states, which are
termed as the collective states of the two-atom system, defined by



Physical Science International Journal, 4(4): 591-605, 2014

595

| ⟩ = |g ⟩ ⨂ |g ⟩| ⟩ = 1√2 [|e ⟩ ⨂ |g ⟩ + |g ⟩ ⨂ |e ⟩]| ⟩ = 1√2 [|e ⟩ ⨂ |g ⟩ − |g ⟩ ⨂ |e ⟩]| ⟩ = |e ⟩ ⨂ |e ⟩ (2.5)

Unlike the standard basis states, the collective basis contains two intermediate states,| ⟩ and | ⟩ that are linear, symmetric and anti-symmetric super positions of the product states
respectively, as shown in Fig. 2. Their energies depend on the dipole-dipole interaction and
these states go through a large energy shift even for a small inter-atomic separation.

Fig. 2. Schematic energy level diagram of two identical two-level atoms as an
equivalent four-level system in collective basis

In the rotating wave approximation (RWA), the density matrix elements transform as

= ; = Ω ; = Ω ; = Ω

= Ω ; = ; = ; = Ω

= Ω ; = ; = ; = Ω

= Ω ; = Ω ; = Ω ; =

The resulting equations of motion for the sixteen density matrix elements after RWA are
obtained as follows:

= Ω( − ) − 2Γ

= Ω − + − + (Δ − Δ )2 ( − ) − (Γ + Γ )( − )
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= (Δ − Δ )2 ( − ) − (Γ − Γ )( − )
= − Ω + (Δ + Δ )2 − (Γ + Γ )2 + Ω + (Δ − Δ )2+ Ω 2 + + − + (Γ + Γ )
= (Δ + Δ )2 − (Γ − Γ )2 − Ω + (Δ − Δ )2 − (Γ − Γ ) + Ω

= [ (Δ + Δ ) − Γ] + Ω −
= (Δ + Δ )2 − (3Γ + Γ )2 − Ω + (Δ − Δ )2 − Ω − −
= (Δ + Δ )2 − (3Γ − Γ )2 + Ω + (Δ − Δ )2 − Ω

= (Δ − Δ )2 ( − ) − (Γ − 2 Ω ) − Ω( + )
= − − −

(2.6)

The remaining equations can be obtained from the Hermitian properties of the density matrix
elements, viz., = ∗
In the above equations the atomic detuning Δ = − , 2,1i , where is the frequency

of thi atom, is the frequency of applied field and the total two-atom detuning Δ = Δ + Δ .
Here Γ = Γ = Γ is the spontaneous decay rate of each atom and Ω = Ω√ is the modified
Rabi frequency.  A detailed inspection of the equations of motion reveals that the symmetric
state is super radiant with rate Γ + Γ , whereas the anti-symmetric state is sub-radiant with
rate Γ − Γ . The slowly decaying state | ⟩ can be populated through two different channels,
viz., the spontaneous emission from the state | ⟩ and the coherent interaction with the
state | ⟩. By using the completeness condition of the level populations + + += 1, the 16 equations can be reduced to 15 equations which can be cast in the form

Ψ = Ψ + Φ (2.7)

where M is a 15 ×15 coefficient matrix and Ψ,Φ are column vectors each of length 15 which
are defined in the following:
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Ψ = [ ] (2.8)

Φ = [0 − Ω 0 0 0 0 0 Ω 0 0 0 0 0 0 0] (2.9)

Depending on the information that is being sought, the equations can be solved either as a
function of time, which will necessitate solution of 16 first order coupled differential
equations, or in steady state. In particular, the steady state solution of the density matrix
elements is obtained as:

Ψ = Ψ( → ∞) = − Φ (2.10)

As the focus here is on the steady state behaviour of the two-atom system, we present
numerical results of different quantities, both for identical as well as non-identical atoms, in
the next section.  In the equations of the density matrix elements the ’˜’ above each of the
elements denotes that the elements are in rotating frame.  In the next section, we remove
the ’˜’ for brevity of notation with the understanding that all the elements are defined in the
rotating frame.

3. RESULTS AND DISCUSSION

The steady state behaviour of level populations, various atomic coherences and
concurrence are studied numerically for a wide parameter range, both for identical and non-
identical atoms.  In this section, some representative numerical results for typical values of
the parameters are presented.  Throughout the results presented here, all the parameters,
namely the atomic detunings, the Rabi frequencies, the dipole-dipole interaction constant are
all normalized with respect to the population decay rate Γ.

3.1 Identical Atoms

The steady state populations of different levels in the collective basis, namely , ,
and for the case of identical atoms are plotted in Fig. 3, as a function of the two-atom
detuning ∆, for a fixed value of the scaled Rabi frequency Ω and for different values of the
dipole coupling parameter Ω .

For the case of identical atoms, it is found that the singlet anti symmetric state | ⟩ acts as a
dark state or a trapping state. This is so because the atomic coherences between this state
and the rest of the triplet states are always found to be equal to zero. In this case, it is
observed that the height of the central peak steadily decreases with an increase in the dipole
coupling strength. Some representative values of the parameters are chosen to demonstrate
this feature in Fig. 3, in which each of the sub-figures corresponds to a different value of the
inter-atomic spacing which in turn defines the dipole coupling strength. For example, the
steady state level populations which are plotted in Fig. 3(a) - 3(d), show the behaviour for
three values of = , and . The corresponding dipole coupling parameter for these
values of inter-atomic spacing, as obtained from equation 2.2 is given by Ω = 2.6, 7.6 and
16.6.

For a non-zero dipole-dipole interaction, the two - atom system has resonances at ∆= 0
and ∆= −2Ω . At ∆= −2Ω , only the ground and symmetric states [cf. Fig. 3(a), 3(c)] are
significantly populated. Lack of a corresponding peak in , shown in Fig. 3(d), can be
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understood from the fact that the alternate pathways for stepwise excitation | ⟩ → | ⟩ →| ⟩ and | ⟩ → | ⟩ → | ⟩ are both inhibited. This feature is generally referred to as dipole
blockade. The central resonance (peak at ∆= 0) in results from a simultaneous excitation
of both atoms (| ⟩ → | ⟩ ) which is termed as the two-photon resonance [20]. The
resonances in other intermediate state populations at ∆= 0 can be interpreted as arising
from subsequent decay from | ⟩ to these states. With increasing Ω , the value of the
resonant peak at ∆= 0 identically decreases for all the excited states, i.e., inhibition of two
photon resonance due to the dipole-dipole interaction. A careful inspection of the behaviour
of populations reveals that the step-wise excitation is more inhibited than the direct
excitation.

Fig. 3. Level populations for identical atoms , , and corresponding to
inter - atomic distances of = , and

3.2 Non-identical Atoms

For the case of non-identical atoms, we assume different energy level separation between
ground and excited states of the two atoms and hence Δ ≠ Δ . We also assume that the
two decay constants Γ and Γ are close enough, that they can be effectively considered
equal, denoted by Γ. This is not physically inconsistent since in comparison to values of Rabi
frequencies and detunings, the value of decay constants of different atoms are much closer.
For example, Li7 and Rb85 have decay rates 5.92 MHz and 5.98 MHz respectively while
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their resonant wavelengths are 670 nm and 780 nm. In such case, without any loss of
generality, the decay constants of both species can be replaced by an identical value of
5.9MHz. However, when excited by a single mode radiation field, the detunings of each of
these atoms would be markedly different from each other. Without a need to choose specific
atomic species, we assume a situation of Δ = Δ + 10Γ.

The steady state level populations for the case of non-identical atoms, as a function of the
total detuning, are presented in fig. 4. There are three resonance dips in for this
condition, each dip mirrored by a corresponding peak in . The level population also
shows this mirroring with two side peaks of small amplitude, indicating a step wise excitation
of both the atoms, which was very strongly blocked for the case of identical atoms.

Fig. 4. Level populations for non-identical atoms , and corresponding
to inter - atomic distances of = , and
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From an eigenvalue analysis (shown in Fig. 5), the positions of the side bands are given as

4
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can be ascertained from the difference between the 12 dependent eigenvalues.

Fig. 5. Eigenvalue spectrum for (a) identical atoms (b) non-identical atoms

Unlike the behaviour exhibited in the case of identical atoms, for the non-identical atoms,
one observes the presence of side bands in , as well as in . The corresponding
side bands in are of small amplitude, indicating a reduced degree of inhibition of stepwise
excitation in this case.

The central peak at Δ = 0, which corresponds to simultaneous two-atom excitation, shows
very interesting behaviour. As Ω12 is increased, the height of the peak initially increases and
further increase in Ω12 gives rise to a decrease in the peak height.  Varada and Agarwal [20]
have calculated the probability for direct two-photon resonance, for non-identical atoms and
have shown that this resonance is not present when Ω12 = 0. It has to be noted that in our
case the central peak in is a result of the combined effect of the population that can
reach the state |├ ⟩ through a stepwise excitation as well as direct excitation of the two
atoms, which is obtained from a full density matrix calculation. Hence in our case, we notice
the presence of the central peak even in the absence of Ω12 .

The reasons for the increase and subsequent decrease in the peak height, as the dipole-
dipole interaction strength is continuously increased, are not obvious from the above
analysis. However, looking at the eigenvalue evolution [cf. Fig. 5], one can say
that Ω12 causes a shift of the energies of the levels |├ ⟩ and |├ ⟩. A critical value of Ω12 ,
say Ω ( ), exists such that, at this dipole-dipole coupling strength, the shifted energies
of |├ ⟩ and |├ ⟩ become equal to that as seen in the case of identical atoms. In other
words, the non-identical nature of the atoms is compensated by the energy shifts due to
this Ω ( ). Further increase in the value of Ω12 beyond this critical value, will show a
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decrease in the central peak height of , same as the feature seen in the case of identical
atoms.

In order to obtain a parametric relation for this critical value Ω ( ), computations were
carried out for a wide range of parameters. From a careful analysis of the data thus
obtained, it is inferred that Ω ( ) is given by Δ2 − Δ1. The choice of the values of Ω12 in the
figure is made such that this effect can be clearly demonstrated for the chosen values of the
other parameters, in particular Δ2 − Δ1 = 10Γ. For example, one can clearly see the increase
in the central peak height of [cf. Fig. 4(d)], as Ω12 is increased from 2.6 (blue online) to
7.6 (green online) (corresponding to the range below Ω ( )). The third value 16.6 (red
online) is chosen to be greater than Ω ( ), where the decrease in the central peak height is
clearly seen.

Further insight into the behaviour of this central peak can be obtained by looking at the
atomic coherence . In the next Fig. 6 the imaginary part of the atomic coherence at
the line-center (Δ = 0) is plotted, as a function of for three values of Rabi field strength Ω0.
One notices that, in particular for higher values of the Rabi field strength, the pattern of
increase, decrease and a second increase, as evident from the two peaks in Im ( eg ) is
similar to the behaviour exhibited by the central peak of . The small differences in the
detail here can be attributed to the fact that the central peak in is a result of all the
pathways of excitation put together whereas the atomic coherence is a two-photon
coherence.

Fig. 6. The atomic coherence Im ( eg ) on resonance for (a) identical atoms (b) non-
identical atoms

3.3 Concurrence

In this sub-section, we present results of concurrence, which is a measure of entanglement.
The concurrence is calculated using the method elaborated in [22,19], for various values
of and Ω0 in the region of validity of dipole approximation < 1. Three dimensional plots
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of the two-photon excited state population are presented in Fig. 7 and the corresponding
concurrences are presented in Fig. 8.

Fig. 7. Steady State for the case of (a) identical atoms (b) non-identical atoms

Fig. 8. Steady State concurrence for the case of (a) identical atoms (b) non-identical
atoms

In the case of identical atoms, for a given value of Ω0, the concurrence peaks at a specific
value of . For all other values of , concurrence is minimum and in addition is equal to
zero whenever Ω12 < Ω0

2 2⁄ . For non-identical atoms, the concurrence shows a more
complex behaviour as is clear from figure 8 (b).

For moderate values of Ω0, as is increased from 0 to 1, concurrence gradually increases.
For higher values of Ω0 (4 and above), there is a region of in which the concurrence goes
to zero and remains zero, which can be interpreted as sudden death of entanglement.
Further increase of for the same range of Ω0 exhibits non - zero concurrence, which on
the same token can be understood as entanglement re-birth.

In summary, a careful inspection of Fig. 7 and 8 clearly shows that the parameter zones
where dipole-blockade is maximized, which is same as decrease in the line-center
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population , are the same regions where concurrence is maximum. This is
understandable because presence of dipole blockade is also an indicator of entanglement.
From the results of Fig. 7, we can infer that the two-atom excitation depends upon two
parameters, the Rabi coupling strength Ω0 and the dipole-dipole interaction Ω12. There is a
competing effect with respect to how these two parameters affect simultaneous excitation of
both atoms. The eigen value evolution with respect to Ω12 is linear in case of identical atoms
and non-linear in case of non-identical atoms [cf. Fig. 5]. This appears surprising at first
since for this particular case, we assume the same Ω0 for both atoms even when they are
non-identical.  But the fact is that resonant two-atom excitation happens at Δ = 0 = Δ1 + Δ2.
This implies that effective coupling ratio Ω0 Δ1⁄ for one atom differs from the other Ω0 Δ2⁄ ,
which leads to different couplings. This strongly suggests that each atom has a set of values
for Ω0, Ω12 and Δ at which the probability of excitation is maximum. However, this is different
from the value at which probability for both atoms getting excited together is maximum.

The study presented here quantifies the relationship between dipole-blockade and
entanglement. These quantitative connections between different atomic properties provide
an idea of the parameter zones where this system can be exploited for the purpose of
quantum information processing.

4. CONCLUSION

A system of two two-level atoms interacting with a single mode radiation field and interacting
with each other through the dipole-dipole interaction is studied. Results of different level
populations, the atomic coherence and the concurrence are presented for a wide variety of
parameters:

a) The two photon resonance which appears in the presence of the dipole coupling
strength shows an increase up to certain values of the coupling strength and beyond
this critical value, it decreases thus exhibiting anomalous behaviour, only for the
case of non-identical atoms. However, this anomalous behaviour is observed in the
coherence both for identical as well as non-identical atoms.

b) The physical reasons for the non-monotonic behaviour of two-atom excitation in
case of non-identical atoms require further investigation. However, it can be
explained in a simple sense of being due to different set of parameters Ω0, Ω12
and Δ at which each atom individually has maximum excitation probability, which in
turn is different from the probability for simultaneous excitation. Varying any of the
parameter will traverse over the probability curve showing a non-monotonic
behaviour.

c) From a detailed analysis of the two-atom excited state population and the
concurrence, a qualitative connection between the dipole-blockade and the
entanglement is made.

d) To summarise, an attempt has been made to provide a range of parameter values
within which the properties of the atomic system can be manipulated in a desired
fashion for applications such as quantum information processing.
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