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ABSTRACT 
 

The phytohormone cytokinin regulates various crucial functions of plant growth and development 
such as shoot apical meristem activity, flower development, vascular development etc. and also 
has negative role in lateral root development and root apical meristem activity. Cytokinin is 
degraded by cytokinin oxidase/dehydrogenase (CKX) irreversibly and reversible inactivation by 
glucosylation. Various homologous genes of CKX have been identified in Arabidopsis and in many 
other crop plants. The root specific expression of CKX showed positive results for larger root with 
higher lateral root numbers and higher root to shoot biomass. The site-specific manipulation of CKX 
gene has been done in crops like wheat, barley, maize, rice, legumes and horticultural crops to 
regulate the cytokinin levels in the particular tissues to enhance the yield, tolerance to various 
abiotic stresses (drought, salt, lower soil fertility), biofortification for many micronutrients (Zn, Fe) in 
the seed, propagation, etc. And the use of modern techniques in manipulation of CKX have been 
started to improve the crop plant and the outcome is very promising for the future application in 
commercial agricultural activities. 
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ABBREVIATIONS 
 
ABA : Abscisic Acid 
CKX : Cytokinin Oxidase/Dehydrogenase 
H2O2 : Hydrogen Peroxide 
Ip : Isopentyl Adenine 
PCR : Polymerase Chain Reaction 
QTL : Quantitative Trait Locus 
RAM : Root Apical Meristem 
SAM : Shoot Apical Meristem 
YFP : Yellow Florescence Protein 

 
1. INTRODUCTION  
 
The demand for the agricultural crop is 
increasing day by day as the global population 
increases [1]. The current situation of the world is 
about 815 million people were undernourished 
reported by United Nations Food and Agriculture 
Organizations [2]. The main cause for this 
undernourishment is the protein-energy 
malnutrition and micronutrient deficiency in food 
[3]. In the current situation where the land is 
decreasing due to population outbreak and food 
demand is increasing, the more intense use of 
cropland could meet the demands but due to 
unpredictable and changing environment 
condition the problem is becoming worse [1]. 
Natural hazards like drought, flood and biotic 
stresses are limiting the crop production [4].  
 
In the current scenario of human population, the 
improvement in the majorly grown crop like 
cereals, legumes, oilseeds etc., faces numerous 
abiotic stresses during their life cycle, is the 
solution for feeding the growing population 
[5].The plants with larger root system can 
withstand in the drought and low nutrient soil 
conditions [6-10]. For this, the cytokinin 
oxidase/dehydrogenase enzyme can be an 
important player and can be exploited to improve 
the crops productivity. This enzyme degrades the 
phytohormone cytokinin in specific tissue at 
specific time in the plant. It has been reported by 
several scientists that cytokinin negatively 
regulated the lateral root formation [11,12] and 
the mutant plant of Arabidopsis defective 
response for cytokinin showed the high 
branching of roots [13-15]. 
 
Cytokinin level in plants is regulated by various 
processes like reversible glycosylation, action of 
adenine phosphoribosyl transferase and also 
degradation by the cytokinin oxidase/ 
dehydrogenase (CKXs) irreversibly [16]. The 

manipulation of level of cytokine in the barley, 
Populus and rape was used to improve the 
agronomic value by using the variants of 
cytokinin dehydrogenase [17,18] and lead to 
improve root growth and drought tolerance. 
Recently Khandal et al. [19] reported that the 
increased activity of CKX in chickpea roots 
enhances the drought tolerance, seed yield and 
also concentration of micronutrients like zinc, 
iron, potassium and copper without 
compromising with the protein level in seed. The 
cytokinin is necessary for seed development [20] 
and it was also reported by Ashikari et al. [21] in 
rice. In wheat the concentration of endogenous 
cytokinin was found high at the time of rapid 
endosperm nuclear and cell division in 
developing seed [22]. The overexpression of 
AtCKX3 reduces the formation of primordium in 
floral meristem leading lower number of flowers 
[23].  
 
In this review article, the information regarding 
cytokinin and its regulation through CKX at 
different stages and in different crops has 
collected and compiled for better understanding 
of CKX functions which can help in developing 
the crops with higher nutrition quality and can 
grow under limited water condition and low fertile 
soil without compromising the seed yield. 
 

1.1 Cytokinin and Its Metabolism 
 
The plant hormone cytokinin is synthesized by 
two processes either by an 
isopentenyltransferase (IPT) attaching on 
isoprenoid side chain of adenosine triphosphate 
or adenosine diphosphate (ATP/ADP) 
synthesizing nucleotide of isopentenyl adenine 
(iP) and tans-zeatin (tZ) or by a tRNA-IPT 
leading, indirectly to the cisZ-type cytokinin. 
Cytokinin is activated by the LONELY GUY 
(LOG) by releasing the free base from the 
nucleotide forms. Cytokinin oxidase/ 
dehydrogenase are the key player in destruction 
of cytokinin. O-glucosylation or N-glucosylation 
both can inactivate the cytokinins [24-27].  
 

1.2 Role of Cytokinin in Growth and 
Development  

 
1.2.1 In the shoot tissues 
 
In the shoots, the development of shoot apical 
meristem (SAM) is controlled by various factors 
like transcriptional factors, external signals and 
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phytohormons specially cytokinins [28,29,23] and 
[30] reported the highly decreased SAM in the 
plant deficient in cytokinin and suggested that 
cytokine is crucially required by the plant for 
developing and maintaining SAM. Similar 
observations were reported by various workers 
[31-33,14] in their experiments by mutating the 
multiple receptor or IPTgene which suggested 
that the cytokinin positively regulate the SAM 
activity [34]. 
 

The growth of vascular cambium and radial 
growth of plant is also controlled by the cytokinin 
[35,36]. Experiment of Nieminen et al. [35] in 
poplar and birch trees found that the genes of 
receptors of cytokinin and other cytokinin 
signaling genes were expressed in cambial zone, 
and also found reduced cambial activity in the 
transgenic plant made by targeted expression of 
CKX genes in the cambial cells.  
 
Cytokinin has an antagonistic activity to the auxin 
in shoot by promoting the growth of axillary buds, 
in Physcomitrella iPR and extracellular iP are the 
common cytokinin required to induce bud 
formation [37]. 
 
The sink-source relations and leaf senescence is 
also regulated by cytokinin concentration in plant 
[38]. This was reported by [39] in tobacco plant 
deficit in cytokinin leads to reduction in 
chlorophyll synthesis and lower in sugar content 
and increased amount of starch in the shoot and 
also reduction in invertase activity in vacuole. 
 
1.2.2 In the root tissues 
 
Cytokinin positively regulate the vascular 
differentiation in the root meristem. The work on 
characterization of wooden leg (wol) allele of 
CRE1/AHK4 (a dominant-negative allele), 
Mahonen et al. [40] found that cytokinin is 
necessary for procambial cell division during 
embryogenesis to ensure vascular differentiation.  
 

Cytokinin play a role in root apical meristem 
(RAM) unlike to SAM development, it negatively 
regulate the activity of RAM, this was proven by 
various scientist as their results suggest that 
plant develop a large RAM and rapid growth of 
roots in the condition where cytokinin deficit or 
lower signal output [23,13,31,14,41,42].  
 
The lateral root formation is negatively regulated 
by cytokine; this was observed in several 
experiments by making transgenic and mutant 

plants [23,43,44,13,14]. The lateral root 
formation was inhibited by cytokinin by blocking 
the first division of xylem-pole pericycle cells only 
[45,46]. 
 

2. CHARACTERIZATION AND 
UTILIZATION OF CYTOKININ 
OXIDASE/DEHYDROGENASE 

 
Cytokinin oxidase/dehydrogenase is a key 
enzyme which regulates the cytokinin level in the 
plant, this was reported by various researchers in 
different crops- Arabidopsis thaliana [23], maize 
[47], rice [21], pea [48], barley [49], foxtail millet 
[50], Fragaria vesca [51], and wheat [52]. 
Cytokinin oxidase/dehydrogenase is encoded by 
a small gene family, in Arabidopsis thaliana 
seven homologous genes are present [53]. Till 
date it has not been reported in chickpea, only 
CaCKX6 was characterized by Khandal et al. 
[19]. Summary of some crop improvement works 
by utilizing the CKX manipulation is presented in 
Table 1. 
 

2.1 In Model Plant Arabidopsis thaliana 
 
The Arabidopsis plant has seven homologous of 
CKX gene and the tissue specific expression of 
them is different, Werner et al., [23] reported that 
AtCKX1 and AtCKX2 expressed in young tissues 
like shoot apex, AtCKX4 expressed in stomatal 
precursor cells, root caps and in cells of 
trichomes, AtCKX5 expressed in the procambial 
region of root meristem, AtCKX6 expressed in 
vascular tissues and AtCKX3 expression was 
associated with cell cycle. 
 
The CKX7 was reported as localized in cytosol 
by Schmulling et al. [70] and experimentally 
demonstrated by Kollmer et al. (2014) [54]. They 
fused the green fluorescent protein (GFP) in 
CKX7 at c-terminus and this construct was 
expressed under control of Cauliflower mosaic 
virus 35S promoter in Arabidopsis plant. The 
fluorescence signal was detected under confocal 
microscopy and reported the expression was 
found in cytosol. 

 
Overexpression of AtCKX under control of 35S 
promoter in Arabidopsis was analysed and found 
that rate of root elongation was 70-90% more 
than wild type in 35S: AtCKX1 and 
35S:AtCKX3expressing seedling and the lateral 
root formation was also higher than the wild type 
[23]. 
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Table 1. Some important crop improvement works using CKX manipulation 
 

Plant CKX variant Action Effect Source 

Arabidopsis CKX1, CKX2, CKX3, CKX4 Overexpression Retarded shoot growth and enhanced root growth [32] 
   Tolerant to salt stress  
   Tolerant to drought stress  
 CKX7 Overexpression  Root growth and xylem differentiation  [54] 

Rice CKX2 (Gn1a) CKX mutant High in panicle branches [21] 
   High in grains/panicle  
   High in grain number  
  RNAi High in grain number  
  Overexpression  Low in grain number  
 CKX2 RNAi High in tiller number [55] 
   High in grain number  
   High in grain weight  
   No response for grain/panicle  
 CKX2 (Gn1a) CRISPR/Cas9 High in panicle size [56] 
   High in flower number  
 CKX9 CRISPR/Cas9 High in tiller number [57] 
  Overexpression Low in panicle size  
   Low in grain number   

Barley HvCKX1 RNAi High in spike number in T4 [49] 
   High in grain number in T4  
 HvCKX9 RNAi No effect at T4  
 HvCKX1 RNAi High in spike number [58] 
   High in grain number  
   Low in 1000 grain weight  
   High in yield  
  CRISPR/Cas9 No yield data provided  
 HvCKX1  CRISPR/Cas9 Limited effect [59] 
 HvCKX3 CRISPR/Cas9 Low in grain number  
   Low in grain weight  
 CKX2 Targeted overexpression in root Tolerant in long term drought [17] 
   Biofortification of Zn, Fe and other micronutrients [60] 

Wheat Ta2.2.1-3A RNAi High in grain weight [61] 
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   No change in spikelet number  
 GW2 CRISPR/Cas9 + TILLING; triple 

mutant on A, B, D sub-genome 
High in grain size 
High in 1000 grain weight 

[62] 

 CKX2.2.1-3D Mutation association analysis  High in 1000 grain weight  [63] 
 CKX2.1-3D Mutation associated analysis High in grain size [64] 
   High in grain weight  
   High in grain filling  
 CKX4-3A, 3D Variant association analysis High in grain weight [65] 

Tobacco  CKX1 Root specific overexpression  Tolerant to drought stress [66] 
   Higher accumulation of minerals   
   Improved leaf chlorophyll content  

Medicago 
sativa 

MsCKX Overexpression Tolerant to salt stress [67] 

Lotus CKX3 qRTanlysis Helping in nodule development [68] 

Brassica  CKX5-1, 5-2,6-1, 7-1 qRT analysis  Development of siliques  [69] 
 CKX2 Overexpression  Enhanced root growth [18] 
   Enhanced chlorophyll content   
   Accumulation of higher amount of Cd and Zn  

Populus  CKX2 Root specific overexpression Inhibition of sprouts development [67] 
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Overexpression of CKX in Arabidopsis plant was 
examined for the stress tolerance and reported a 
higher salt stress tolerance in the plant 
overexpressing CKX1 among all other CKX. And 
the drought stress tolerance was also observed 
in these mutant plant and found more drought 
tolerant than wild type [32]. 
 

2.2 In Monocotyledonous Plants  
 
Five different type of ZmCKX genes have been 
characterized in maize [71,72]. In another 
experiment, the maximum expression of ZmCKX 
was found in kernels, tassels and ears as 
detected by semi-quantitative real time PCR 
reported by Massonneau et al. [73]. 
 
In barley, the real time PCR data analysis for 
HvCKX showed that the HvCKX1 expressed in 
mature kernels, roots and leaves, while HvCKX2 
expression was found in roots and leaves but the 
HvCKX3 was predominantly expressed in mature 
kernels [74]. The over expression of HvCKX 
under constitutive expressed 35S promoter was 
carried out in Arabidopsis and tobacco plant and 
found shorter internode and dwarf habit along 
with larger root system [74]. Root specific 
expression of CKX1 or CKX2 under control of 
root specific promoter pEPP, pPEP and pRET by 
Agrobacterium mediated transformation in barley 
was done and observed that these mutant line 
showing tolerance under drought condition and 
also accumulate more minerals [17]. The 
analysis of transgenic plants of barley expressing 
CKX specifically in root accumulates higher Zn 
concentration having larger root system [60]. 
HvCKX1 and HvCKX3 knockout mutants of 
barley plant was analysed and reported that 
lower number of grains and grain weight 
observed in CKX3 mutant lines [59]. 
 
In wheat, the RNA interference mediated gene 
silencing done for TaCKX2.2.1-3Aand the mutant 
plants were screened for yield traits. The results 
showed that grain number per spike was 
enhanced as the expression of TaCKX2.2.1-3A 
reduces in T3 [61] and the grain weight were 
found associated with TaCKX2.2.1-3D [63]. The 
crown root growth was found associated with the 
expression of TaCKX in the limited water 
environment [52]. 
 
Ashikari et al.  [21] reported in rice that the Gn1a 
QTL is associated with the increase in yield 
which is a gene for CKX2. Overexpression of this 
gene produces more yield but downregulation 
has opposite impact on yield. Li et al. [56] used 

gene editing tool to change the form of OsCKX2 
gene resulted in increased number of flowers 
and panicle size. Enhanced expression of 
OsCKX4 in a enhancer mutant line of rice 
showed that crown root initiation required the 
activity of OsCKX4 as recorded more crown 
roots, more root growth and strong root 
gravitropic response. Over expression of 
OsCKX4 mutant lines showed more crown root 
growth and RNAi mutant lines of OsCKX4 
produced lesser crown root growth [75]. 
 

2.3 In Dicotyledonous Plants 
 
In tobacco plants the CKX1 was overexpressed 
under root specific promoter [66] and reported an 
enlarged root system which provided tolerance to 
drought stress. In tomato plants, the 
accumulation of hydrogen peroxide (H2O2) is 
regulated by cytokinin, the H2O2involved in the 
degradation of chlorophyll. The protein gel blot 
analysis represent that the CKX35 was found in 
chlorotic leaves and reduces the cytokinin levels 
and hence increased amount of H2O2 and in the 
green leaves the CKX37 was predominantly 
present which is associated with active cytokinin 
concentration and normal hydroperoxide level in 
the leaves [76].  
 
In strawberry (Fragaria vesca),the real time PCR 
analysis showed that the expression of FvCKXs 
was higher under drought, salt stress, heat stress 
and ABA treatment in roots, leaves and young 
fruits, this suggests that cytokinin has a negative 
role in growth and development under the stress 
conditions [51]. 
 
Liu et al. [77] reported 12 BrCKX and 13 BrIPT 
genes in chinese cabbage and the stress related 
stimuli were found in the promoter region of 
these genes deteceted through transcription level 
analysis and they confirmed that these BrCKX 
and BrIPT genes have role in drought and 
salinity stress. In oilseed rape23 BnCKX genes 
were identified [69] and real time PCR results 
suggests that BnCKX5-1, 5-2, 6-1 and 7-1 could 
be associated with the pod development and 
length of silique length. The analysis of 
transgenic oilseed rape plants with 
overexpression of CKX2 represent the higher 
root-shoot biomass and accumulation of higher 
concentration of various micro and macro 
nutrients like P, Ca, Mg, S, Zn. Cu, Mo and Mn. 
The transgenic plant showed enhanced growth of 
chlorophyll under S and Mg deficiency and plants 
were able to extract more amounts of Cd and Zn 
from contaminated medium and soil [18]. 



 
 
 
 

Yadav et al.; Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 1761-1772, 2023; Article no.IJECC.100355 
 
 

 
1767 

 

For horticultural and silvicultural crops, grafting is 
an important technique for propagation but a 
problem during grafting is very common that 
undesirable lateral bud emergence reduces the 
grafting efficiency. To overcome of this problem 
Li et al. [78] develop a transgenic with expression 
of tryptophan-2-monooxygenase (iaaM) under 
root specific promoter (SbUGT), this 
arrangement solved the problem of success of 
grafting but the root elongation biomass was 
reduced. They develop one more transgenic 
using CKX under same promoter, the root 
biomass was found higher. They made the cross 
of these two and reported that the negative effect 
due to iaaM was neutralized by activity of CKX 
and this made the grafting successful without 
compromising root development. The promoter 
SbUGT was used to express the AtCKX2 in 
Populus which reduces the root sprouts in field 
condition resolving the problem of root-sprout 
mediated transgene spread [79]. 
 

2.4 In Leguminous Plants 
 
It was reported by Lohar et al.  [43] that the 
AtCKX3 under constitutive expression positively 
regulates the nodulation in legumes 
demonstrated in Lotus japonicus. In Medicago 
tuncatula [80] expressed AtCKX3 under 
epidermal promoter pEPI in medicago and found 
upregulation of nodulation factor when inoculated 
with S. meliloti and when it expressed with 
cortex-specific promoter (pCO) the infection was 
reduced [81]. 
 
The cellular localization of CKX3 was reported in 
growing nodules and cortical cell division of the 
nodule primordium for this the promoter of CKX3 
was fused with YFP (pCKX::YFP) and the 
fluorescence signal was recorded in Lotus 
japonicum. Phenotypic evaluation of CKX3 
mutant plants indicates that CKX3 activity 
positively regulates the nodulation and the 
activity of cytokinin dose opposite function [68]. 
 
Le et al. [82] reported 14 GmIPT and 17 GmCKX 
genes in soybean and comparative analysis of 
promoter sequence of GmCKX genes with 
Arabidopsis genome and suggested that GmCKX 
were related with abiotic stress like drought.  
 
Recently Khandal et al. [19] used the chickpea 
root specific promoter (CaWRKY31) to express 
the chickpea cytokinin oxidase/dehydrogenase 6 
(CaCKX6) in Arabidopsis thaliana and chickpea. 
Analysis of the transgenic plants represent 
increase in lateral root number and root to shoot 

biomass, and these transgenic lines withstand in 
long term drought condition without 
compromising with nodulation and nitrogen 
fixation. Their results also clearly indicates that 
those line produced upto 25% more yield and 
also having more Zn, Fe, K and Cu in the seeds 
with similar protein content.  
 

3. CONCLUSION AND FUTURE 
PERSPECTIVE  

 

In the past the understanding related to cytokinin 
oxidase/dehydrogenase (CKX) has been 
significanctly improved. From the above 
mentioned data it is clear that CKX enzyme has 
a key role in crop growth and development, it can 
regulate cytokinin level which play very crucial 
role in meristematic activity, root development, 
seed formation, chlorophyll concentration etc. 
Targeted manipulation of CKX provides the 
energy to the plant to withstand under stress 
conditions and enhancement in the yield with 
more nutrition values. In future the use of CKX 
manipulation through breeding programme or 
through editing tool can be done for the crop 
improvement for the majorly grown crops like 
cereals, pulses, oilseeds to feed the growing 
population and CKX can contribute to “ new 
green revolution” [21]. Now the future challenge 
for researcher is to find out natural electron 
acceptors of CKX enzyme. 
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