
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Toward a theory of machine learning
To cite this article: Vitaly Vanchurin 2021 Mach. Learn.: Sci. Technol. 2 035012

View the article online for updates and enhancements.

You may also like
An Improved Fully Convolutional Network
for Semantic Segmentation
Gaihua Wang, Xizhou Wan, Xu Zheng et
al.

-

Applicability of the minimum entropy
generation method for optimizing
thermodynamic cycles
Xue-Tao Cheng, , Xin-Gang Liang et al.

-

Entropy Profiles Decrypted: Quantifying
and Understanding the Influence of
Crystalline Defects through Experiment
and Modelling
Michael Peter Mercer, Steffen Schlueter,
Denis Kramer et al.

-

This content was downloaded from IP address 223.236.224.249 on 03/07/2023 at 07:41

https://doi.org/10.1088/2632-2153/abe6d7
/article/10.1088/1742-6596/1952/2/022019
/article/10.1088/1742-6596/1952/2/022019
/article/10.1088/1674-1056/22/1/010508
/article/10.1088/1674-1056/22/1/010508
/article/10.1088/1674-1056/22/1/010508
/article/10.1149/MA2017-02/4/329
/article/10.1149/MA2017-02/4/329
/article/10.1149/MA2017-02/4/329
/article/10.1149/MA2017-02/4/329

Mach. Learn.: Sci. Technol. 2 (2021) 035012 https://doi.org/10.1088/2632-2153/abe6d7

OPEN ACCESS

RECEIVED

25 September 2020

REVISED

8 February 2021

ACCEPTED FOR PUBLICATION

16 February 2021

PUBLISHED

13 May 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Toward a theory of machine learning
Vitaly Vanchurin

Department of Physics, University of Minnesota, Duluth, MN 55812, United States of America
Duluth Institute for Advanced Study, Duluth, MN 55804, United States of America

E-mail: vvanchur@d.umn.edu

Keywords:machine learning, statistical mechanics, thermodynamics of learning, quantum mechanics, emergent gravity

Abstract
We define a neural network as a septuple consisting of (1) a state vector, (2) an input projection,
(3) an output projection, (4) a weight matrix, (5) a bias vector, (6) an activation map and (7) a loss
function. We argue that the loss function can be imposed either on the boundary (i.e. input and/or
output neurons) or in the bulk (i.e. hidden neurons) for both supervised and unsupervised
systems. We apply the principle of maximum entropy to derive a canonical ensemble of the state
vectors subject to a constraint imposed on the bulk loss function by a Lagrange multiplier (or an
inverse temperature parameter). We show that in an equilibrium the canonical partition function
must be a product of two factors: a function of the temperature, and a function of the bias vector
and weight matrix. Consequently, the total Shannon entropy consists of two terms which represent,
respectively, a thermodynamic entropy and a complexity of the neural network. We derive the first
and second laws of learning: during learning the total entropy must decrease until the system
reaches an equilibrium (i.e. the second law), and the increment in the loss function must be
proportional to the increment in the thermodynamic entropy plus the increment in the complexity
(i.e. the first law). We calculate the entropy destruction to show that the efficiency of learning is
given by the Laplacian of the total free energy, which is to be maximized in an optimal neural
architecture, and explain why the optimization condition is better satisfied in a deep network with a
large number of hidden layers. The key properties of the model are verified numerically by training
a supervised feedforward neural network using the stochastic gradient descent method. We also
discuss a possibility that the entire Universe at its most fundamental level is a neural network.

1. Introduction

Despite many attempts [1–6], the effectiveness of deep learning has no clear explanation so far. This is rather
surprising given that a neural network is a very simple and well-defined mathematical object [7–9]. What
makes it difficult to analyze is that the deep neural networks are typically described with a very large number
of parameters, e.g. weight matrix, bias vector, training data, etc. For such systems most of the analytical
techniques are not very useful and one must rely on numerics. The situation is very similar to what happens
in physics. Physical systems (both classical and quantum) can often be solved exactly when the number of
degrees of freedom is small, but the problem becomes intractable when the number of degrees of freedom is
large. Fortunately, there is a set of ideas which proved very useful for analyzing physical systems with many
degrees of freedom. It is statistical mechanics. The main point of the present paper is to apply the methods of
statistical mechanics to machine learning. Note that the idea of using statistical methods to study artificial
neural networks is not new and goes back to the works of Hopfield [10, 11] (see [12] for a recent review of
statistical methods used in machine learning as well as applications of machine learning methods in physics);
but in this paper we shall go one step further and develop both equilibrium and non-equilibrium
thermodynamic descriptions of neural networks. In the remainder of this section, we will summarize the
main results as it might help the reader to navigate through the paper.

In section 2 we set the stage by defining a neural septuple (i.e. state vector, input/output projection
operators, weight matrix, bias vector, activation map and loss function). The septuple is not equivalent to the

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abe6d7
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abe6d7&domain=pdf&date_stamp=2021-5-13
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9496-9212
mailto:vvanchur@d.umn.edu

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

standard neural architecture used in machine learning, but it does include such systems as a special limit.
There are three main motivations to define these more general structures. Firstly, we want to develop a
unified treatment of different types of learning algorithms, i.e. supervised, unsupervised, etc. Secondly, we
want the very structure of hidden layers to be a dynamical variable in addition to the weight matrices and bias
vectors. And finally, we want to have a theoretical framework which is suitable for a statistical description.

In section 3 we address the main problem of unsupervised learning, namely, what should be an
appropriate loss function if the training dataset contains only input, but no output data. We claim that an
answer can be obtained by defining a local error and a local objective for hidden neurons (or in the bulk)
instead of a more conventional error for output neurons (or on the boundary). The boundary loss is usually
given by a sum over errors on the boundary (i.e. over input/output neurons), but the bulk loss could be a
sum over both local errors and local objectives in the bulk (i.e. over hidden neurons). A simple example of a
local objective for a neuron is a binary classification of an incoming signal, and then an outgoing signal with
values closer to lower- and upper-bounds are rewarded and values in-between are penalized.

In section 4 we consider two statistical ensembles over state vectors: a micro-canonical-type ensemble
and a canonical-type ensemble. We expect that in the limit of a large number of neurons the two ensembles
are equivalent, as is usually the case in statistical physics, but the latter ensemble (i.e. canonical ensemble) is a
lot easier to handle analytically. Moreover, we show that the canonical ensemble can be derived from the
Jaynes’ maximum entropy principle [13, 14]. The principle states that the probability distribution (in our
case statistical ensemble) which best represents the current state of knowledge is the one with the largest
Shannon entropy.

In section 5 we define perhaps the most important object in statistical mechanics—a partition function.
For a bulk loss with (or without) a quadratic local objective the canonical ensemble can be approximated by
a Gaussian integral, and then the (canonical) partition function can be calculated analytically. A minor
complication is that the range of integration (which is set by the range of an activation function) is finite in
contrast to the Gaussian integral, whose range is infinite. Nevertheless, the problem can be solved by
replacing the sharp cut-off on the boundaries of integration with a smooth Gaussian window function. In
this section we also define an operator Ĝ, whose spectrum determines the canonical partition function and
plays a central role in everything that follows.

In section 6 we define a time-invariant state of equilibrium (or what we call a learning equilibrium) and
show that in such a state the partition function must factorize into the product of two factors: a function of
the temperature, and a function of the bias vector and weight matrix. Among other things it implies that the
total free energy is a difference of two terms: a familiar thermodynamic free energy, and an unfamiliar
product of the temperature and a complexity function. While the thermodynamic free energy is a function of
only temperature and usually decreases, the total free energy is expected to increase with learning due to a
decrease in the complexity function. This might sound odd but, in fact, is a mere consequence of an
openness of the learning system where the entropy is flowing out of the system.

In section 7 we calculate the total entropy of the canonical ensemble and argue that in an equilibrium it
must be a sum of a familiar thermodynamic entropy and of an unfamiliar complexity function which is
directly related to a dynamical dimensional reduction of the state space. We then argue that the total entropy
must decrease until the system reaches an equilibrium (i.e. the second law of learning (54)), and the
increment in the loss function must be proportional to the increment in the thermodynamic entropy plus
the increment in the complexity (i.e. the first law of learning (59)).

In section 8 we calculate a non-equilibrium production of the Shannon entropy (of a probability
distribution function over weight matrices and bias vectors) and argue that in an optimal neural architecture
the entropy production must be maximized (or, more precisely, the entropy destruction should be
minimized). This is in a complete agreement with the so-called stationary entropy production principle that
was used in [17] to derive an approximate Schrödinger equation from a highly constrained stochastic process
and in [18] to derive an approximate Einstein equation from non-equilibrium thermodynamics of the metric
tensor. We then show that the rate of the entropy production is proportional to the Laplacian of the free
energy in the configuration space of the weight matrices and bias vectors.

In section 9 we used the criteria of minimizing the entropy destruction (or minimizing the negative
Laplacian of the free energy) to derive the expected dynamics of a spectrum of operator Ĝ in an optimal
neural architecture. In particular, we show that most of the eigenvalues of the operator log Ĝ should remain
near zero, a small fraction of the largest eigenvalues should move to positive values≳0 and a very small
fraction of eigenvalues should move to very small values≪0. This implies that the effectiveness of a neural
network can be translated into a skewness of the distribution of eigenvalues of log Ĝ, i.e. the larger the
skewness the better a neural network is expected to perform. Then, we show that the skewness in a deep
architecture is much larger than in a shallow architecture, which demonstrates why the deep architecture is
preferred.

2

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

In section 10 we discuss the main results of numerical experiments conducted using the TensorFlow
Python library [21] and MNIST database of handwritten images [22]. Two different neural networks (a deep
network with two hidden layers and a shallow network with a single hidden layer) were trained using the
stochastic gradient descent (SGD) method, and then the numerical data were analyzed within the context of
the analytical calculations carried out in the paper. More specifically, the training evolution of the bulk and
boundary loss functions progressed as expected, the predicted dynamics of the spectrum of operator Ĝ were
established and the anticipated relaxation of the complexity function toward equilibrium was confirmed.

And finally, in sections 11 and 12 we discuss a possibility that the entire Universe at its most fundamental
level is a neural network. For such an ambitious proposal to actually work we claim that the three
components, quantum mechanics, general relativity and macroscopic observers, must all emerge from a
microscopic neural network. For the time being, we leave aside the problem of observers (see, however, [43])
and study a possible emergence of quantum mechanics and general relativity. In particular, we show that an
approximate Schrödinger equation (see section 11) and Einstein equations (see section 12) can indeed
emerge from a network with a large number of neurons not too far from a learning equilibrium.

2. Neural septuple

We start by introducing all of the essential ingredients of a neural network or, what we shall call, a neural
septuple consisting of

(a) x, a state vector which describes the state of all neurons;
(b) P̂in, an input projection which describes a subspace spanned by input neurons;
(c) P̂out, an output projection which describes a subspace spanned by output neurons;
(d) ŵ, a weight matrix which describes directed connections between all pairs of neurons;
(e) b, a bias vector which describes biases in the inputs of all neurons;
(f) f , an activation map which describes a non-linear transformation; and
(g) H, a loss function which describes a learning objective of the entire network.

Consider a collection of N neurons described by a column1 state vector, x ∈ RN, whose components are
real numbers, xi ∈ R, but one can also generalize the construction to complex numbers or other fields. There
are three types of neurons: input neurons, hidden neurons and output neurons. And so it is convenient to
define three subspaces of the state space: input subspace Vin, output subspace Vout and hidden subspace Vhid.
We shall also refer to the direct sum of the input and output subspaces, Vin ⊕Vout, as a boundary, and to the
hidden subspace, Vhid, as a bulk. A neural network is trained by specifying the components of x in the
boundary subspace which represent only the input and output neurons. The boundary components can be
described with two projection operators (or matrices): an input projection P̂in and an output projection P̂out.
These operators can be used to project a state vector x to either input subspace, i.e. P̂inx ∈ Vin, output
subspace, i.e. P̂outx ∈ Vout, boundary subspace, i.e. (P̂in + P̂out)x ∈ Vin ⊕Vout, or bulk subspace, i.e.
(̂I− P̂in − P̂out)x ∈ Vhid.

The neurons are connected into a neural network with connections described by a weight matrix, ŵ,
which is also an adjacency matrix of a weighted directed graph with individual neurons representing the
nodes of the graph. For the neural networks considered here the components of the weight matrix are
assumed to be real numbers, wij ∈ R, but one can also generalize the construction to complex numbers or
other fields. In addition, for the so-called feedforward neural network with L layers (i.e. one input layer, one
output layer and L− 2 hidden layers) the weight matrix is taken to be nilpotent, i.e.

ŵn =
(
ŵT
)n

= 0 ∀n≥ L, (1)

there are no incoming connections to the input neurons, i.e.

P̂inŵ= 0, (2)

and there are no outgoing connections from the output neurons, i.e.

P̂outŵ
T = 0. (3)

1We adopt the physicists’ notations where the state vector is a column vector and not a row vector, which is usually used in the machine
learning literature.

3

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

The state vector can only change when either new training data P̂inx∂ ∈ Vin are entered:

x(0) = P̂inx∂ (4)

or the new data propagate through the network:

x(t+ 1) = f(ŵx(t)+ b) . (5)

The vector b ∈ RN is a bias vector and f : RN → RN is an activation map which acts separately on each
component, i.e.

fi(y) = fi (yi) (6)

where f i(y)’s are the activation functions (e.g. f i(y)= tanh(y), f i(y)=max(0, y)).
For the input neurons with no incoming connections to remain fixed, i.e.

P̂inx(t) = P̂inx(0) = x(0) = P̂inx∂ , (7)

an additional condition must also be imposed on the input bias:

f
(
P̂inb

)
= P̂inx∂ . (8)

This condition is satisfied for a feedforward neural network, but need not be satisfied for more general
learning systems. After a finite number of steps t the state vector x(t)may converge to a fixed state x(t) = x̄
defined by a fixed point equation:

x̄= f(ŵx̄+ b) . (9)

For example, in a deep feedforward neural network with L layers the fixed state would be reached after L− 1
steps, i.e. x(L− 1) = x̄, given that the condition on the input bias (8) is satisfied. For more general systems
the state may or may not converge to a fixed point depending on the activation transformation (5) and initial
conditions (4).

The final ingredient of a neural septuple is a loss function. In a feedforward neural network the loss
function is usually defined by projecting the fixed state x̄ to the output subspace P̂outx̄ ∈ Vout and then by
comparing the result with a desired output state P̂outx∂ ∈ Vout. For example, one can define a loss function as
a squared error of the output neurons:

H∂(x̄,b, ŵ) =
(
P̂outx̄− P̂outx∂

)T (
P̂outx̄− P̂outx∂

)
(10)

= (x̄− x∂)T P̂ToutP̂out (x̄− x∂)

= (x̄− x∂)T P̂out (x̄− x∂)

where in the last line we used the fact that the projection operator is orthogonal, i.e.

P̂ToutP̂out = P̂2out = P̂out. (11)

Since there is no error on the input neurons (7) we can also rewrite it as a squared error on all boundary (i.e.
input and output) neurons:

H∂(x̄,b, ŵ) =
1

2
(x̄− x∂)T (P̂in + P̂out)(x̄− x∂) . (12)

For this reason, we shall refer to H∂ as a boundary loss function.

4

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

3. Supervised vs unsupervised

In the previous section we defined a neural network as a neural septuple
(
x, P̂in, P̂out, ŵ,b, f,H

)
, where x is a

state vector of all (input, output and hidden) neurons, P̂inx is a state of only input neurons, P̂outx is a state of
only output neurons, ŵ is a weight matrix between all pairs of neurons, b is a bias vector for all neurons, f(y)
is an activation map and H(x,b, ŵ) is a loss function. A simple example of a loss function is the boundary
loss (12), which is known to work very well in a supervised learning system. Unfortunately, the boundary loss
cannot be used in unsupervised systems where the output subspace is empty, Vout = ∅, and thus the
boundary loss is always zero, H=H∂ = 02. For this reason, in unsupervised systems (beyond auto-encoders)
we must consider other loss functions which are, perhaps, more general than the boundary loss.

A key observation is that in equation (12) the boundary loss was due to a mismatch in the output
conditions or (together with input conditions) in the boundary conditions, i.e. (P̂in + P̂out)x̄ ̸= x∂ , but the
fixed point equation (9) was satisfied exactly. Alternatively, we can assume that the boundary conditions are
satisfied exactly (P̂in + P̂out)x= x∂ , but the fixed point equation is only approximate. Then we can define a
bulk loss (as opposed to the boundary loss) as a sum of squares of errors in the fixed point equation, i.e.

H(x̄,b, ŵ) =
1

2
(x̄− f(ŵx̄+ b))T (x̄− f(ŵx̄+ b)) , (13)

where x̄ is the value of x at a minimum of H(x,b, ŵ) subject to boundary conditions (P̂in + P̂out)x= x∂ , i.e.

H(x̄,b, ŵ) = min
(P̂in+P̂out)x=x∂

H(x,b, ŵ). (14)

This is the simplest bulk loss3 which is still zero for unsupervised feedforward neural networks, but can be
easily generalized to functions which can be used in both supervised and unsupervised learning.

The main idea is that, from the point of view of an individual neuron, a (more general) learning objective
can be modeled as a minimization of a local error and, at the same time, a maximization of a local objective.
It is convenient to think of the local error as a supervised quantity (e.g. (x̄i − fi(

∑
jwijx̄j + bi))2 in the bulk

loss function (13)) and of the local objective as a (yet to be defined) unsupervised quantity. Then, even if the
local error is already at its minimum (as is always the case for unsupervised feedforward neural networks),
there is still another quantity which needs to be extremized, i.e. the local objective. This does not mean that
the inclusion of the local objective would only benefit an unsupervised learning system. Once an appropriate
local objective is identified it can be incorporated into a (bulk or boundary) loss function to improve the
convergence of a learning algorithm.

For example, the local objective might be a binary classification of an incoming signal
∑

jwijx̄j + bi, and
then the values of x̄i closer to lower and upper bounds should be rewarded and values in-between should be
penalized. Such a classification objective can always be modeled with an appropriately chosen ‘potential’
term for each neuron. For example if

V(x̄) =
∑
i

Vi(x̄i) =−
∑
i

m

2
x̄2i (15)

then the bulk loss function can be defined as

H(x̄,b, ŵ) =
1

2
(x̄− f(ŵx̄+ b))T (x̄− f(ŵx̄+ b))+V(x̄)

=
1

2

∑
i

x̄i − fi

∑
j

wijx̄j + pj

2

−mx̄2i

 . (16)

By minimizing this loss function we accomplish both tasks: the minimization of the local error and
maximization of the local objective (in this case the binary classification objective). Note that the ‘tachyonic
potential’ (15) does not lead to any runaway solutions if the range of x̄i is bounded by the range of the
activation function. For example, if the activation function is f (y)= tanh(y) then xi∈(−1, 1). More generally,
any two (or more) neurons might have a common objective and then the potential term must also include

2 In our description an auto-encoder is viewed as a supervised system with periodic boundary conditions, i.e. the input and output states
are set equal to each other.
3This bulk loss function is similar in spirit (but not the same) to the error calculated in the back-propagation algorithm, where the error
in the output neurons is back-propagated to the hidden neurons.

5

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

‘interactions’, i.e. V(x̄) =
∑

iVi(x̄i)+
∑

ij g
ijx̄ix̄j... . In either case, according to (14), the corresponding

learning objective remains the same, i.e. we must adjust ŵ and b in such a way that for a given set of
boundary conditions, (P̂in + P̂out)x̄= x∂ , the bulk loss function is minimized. What is, however, different is
that the bulk loss function H(x,b, ŵ) is now given by (16), which contains both a local error (a supervised or
a kinetic term) and a local objective (an unsupervised or a potential term). As a result, the corresponding
bulk loss function is well-defined and (generically) non-zero for both supervised and unsupervised systems.
Unfortunately, the exact solutions of equation (14) are difficult to obtain and so the statistical methods must
be employed.

4. Statistical ensembles

There are basically two ways to proceed: experimental (based on numerics), or theoretical (based on
statistics). We will start with the statistical approach as it might assist us in numerical searches. To begin with,
consider a statistical ensemble of boundary conditions or, more precisely, a probability distribution p∂(x∂)
over components of the state vector in the boundary subspace x∂ = (P̂in + P̂out)x. Such a distribution can,
for example, be extracted from a training dataset. Then, instead of minimizing a loss function for individual
boundary data, the learning objective could be to minimize an ensemble-averaged loss function, i.e.

U0(b, ŵ)≡
ˆ

dN∂x∂ min
(P̂in+P̂out)x=x∂

H(x,b, ŵ)p∂(x∂) (17)

where N∂ ≤ N is the dimensionality of the boundary subspace. If we now extend the probability distribution
into the bulk by defining

p0(x) = p∂((P̂in + P̂out)x)δ (x̄− x) , (18)

where x̄ is given by (14), then the ensemble-averaged loss function is simply

U0(b, ŵ) =

ˆ
dNxH(x,b, ŵ)p0(x). (19)

Of course, all we did was to move the difficulty of calculating x̄ into p0(x), but that does not solve the main
problem. It is still a computationally intensive task to calculate U0(b, ŵ) exactly, and this is where statistical
mechanics comes to the rescue. The key idea is to replace the micro-canonical-type ensemble (18) with a
canonical-type ensemble (26). Note that for sufficiently large systems (in our case large neural networks) one
can often show that the two ensembles are equivalent (i.e. predictions are identical), but the canonical
ensemble is much easier to handle analytically.

Consider a statistical ensemble of neural networks, or a probability distribution p(x), over state vectors x.
Let us say we do not know how the network was trained (i.e. which algorithm was used), but we do know
that the ensemble-averaged bulk loss H(x,b, ŵ) was reduced to some fixed value:

U(b, ŵ) =

ˆ
dNxH(x,b, ŵ)p(x). (20)

Then, according to the principle of maximum entropy [13, 14], the most reasonable distribution p(x) is a
distribution which has the largest Shannon entropy:

S(p)≡−
ˆ

dNx p(x) logp(x) =−⟨logp(x)⟩ (21)

subject to constraint (20). The maximization problem can be solved using the method of Lagrange
multipliers. If we define a ‘Lagrangian’

L(p,β,ν) = S(p)+β

(
U(b, ŵ)−

ˆ
dNx p(x)H(x,b, ŵ)

)
+ ν

(
1−
ˆ

dNx p(x)

)
,

=

ˆ
dNx p(x)(− logp(x)−βH(x,b, ŵ)− ν)+βU(b, ŵ)+ ν (22)

then, at a maximum of L(p,β, ν) the variations with respect to p(x), β and ν must vanish:

0=
δL(p,β,ν)

δp(x)
=−βH(x,b, ŵ)− logp(x)− 1− ν (23)

6

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

0=
∂L(p,β,ν)

∂β
= U(b, ŵ)−

ˆ
dNx p(x)H(x,b, ŵ) (24)

0=
∂L(p,β,ν)

∂ν
= 1−

ˆ
dNx p(x). (25)

Therefore, the maximum entropy distribution must be given by

p(x) = exp(−βH(x,b, ŵ)− 1− ν) (26)

with the Lagrange multipliers β and ν determined from the constraint (24) and normalization condition
(25). In what follows we shall refer to the distribution (26) as a canonical ensemble.

5. Partition function

The partition function for the canonical ensemble (26) is defined as Z ≡ exp(1+ ν) and can be expressed as
an integral over the state space:

Z(β,b, ŵ, ...) =

ˆ
dNx e−βH(x,b,ŵ) (27)

where ... should remind us of any additional variables (e.g.m) which could determine the functional form of
H. To calculate the partition function (27) for a bulk loss (16) we can approximate the integral with a
Gaussian. This can be done by first expanding the activation function:

f(ŵx+ b) = f(ŵ⟨x⟩+ b)+ f̂ ′ŵ(x−⟨x⟩)+O((x−⟨x⟩)2) (28)

where the ensemble-averaged state vector is

⟨x⟩ ≡
ˆ

dNx x p(x) (29)

and a diagonal matrix of first derivatives of the activation function is

f ′ii ≡
(
df(yi)

dyi

)
yi=

∑
j wij⟨xj⟩+bi

. (30)

Then, to the first order in perturbation theory the bulk loss function is

H(x,b, ŵ) ≈ 1

2
(x−⟨x⟩)TĜ(x−⟨x⟩)− m

2
xTx (31)

where

Ĝ≡
(
Î− f̂ ′ŵ

)T(
Î− f̂ ′ŵ

)
. (32)

Next, we note that the domain of x is bounded by the range of the activation function. For example, if the
activation function is f (x)= tanh(x)∈(−1, 1), then the partition function is

Z(β,b, ŵ) =

ˆ
x∈(−1,1)N

dNxe−βH(x,b,ŵ). (33)

The sharp boundaries can be approximated with a smooth Gaussian window function, i.e.

Z(β,b, ŵ)≈
ˆ
x∈(−∞,∞)N

dNxe−βH(x,b,ŵ)e−
1
2 x

Tx (34)

and then the overall partition function is a Gaussian and can be easily evaluated,

Z(β,b, ŵ)≈
ˆ

dNxe−βH(x,b,ŵ)− 1
2 x

Tx ≈
ˆ

dNxe−
β
2 (x−⟨x⟩)TĜ(x−⟨x⟩)− 1−βm

2 xTx

≈ (2π)N/2 det
(
Î(1−βm)+βĜ

)−1/2
exp

(
−1

2
⟨x⟩T

(
(1−βm)βĜ

Î(1−βm)+βĜ

)
⟨x⟩

)
. (35)

7

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

The spectrum of Ĝ is defined by an eigenvalue equation

Ĝvi = λivi (36)

where λi are the real eigenvalues, and vi are the respective eigenvectors. Then, the log of the partition
function is

logZ(β,b, ŵ)≈−1

2

∑
i

log(1−βm+βλi)−
1

2

∑
i

(1−βm)βλia2i
1−βm+βλi

+
N

2
log(2π) (37)

where

⟨x⟩= aivi. (38)

In the limit of a large number of neurons N, the average components are small a2i ≪ 1, and the second term
in (37) is subdominant in comparison to the first term and can be dropped. Then the partition function is
given by (35), but without an exponential factor, i.e.

Z(β,b, ŵ)≈ (2π)N/2 det
(
Î(1−βm)+βĜ

)−1/2
(39)

and the log of the partition function is

logZ(β,b, ŵ)≈−1

2
logdet

(
Î(1−βm)+βĜ

)
+

N

2
log(2π)

≈−1

2
Tr log

(
Î(1−βm)+βĜ

)
+

N

2
log(2π)

≈−1

2

∑
i

log(1−βm+βλi)+
N

2
log(2π). (40)

Note, however, that this is a very rough estimate of the true partition function borne out of our statistical
description, but the hope is that this approximation is rich enough to explain at least some aspects of
machine learning.

6. Learning equilibrium

Given the partition function (27) the average bulk loss can be calculated by simple differentiation,

U(β,b, ŵ) =

ˆ
dNxH(x,b, ŵ)p(x) =− ∂

∂β
log(Z(β,b, ŵ)), (41)

where we have explicitly shown that U(β,b, ŵ) depends on the Lagrange multiplier β (or, what we shall call
an inverse temperature parameter). If the neural network was already trained for a very long time, then the
weight matrix and the bias vector must be in a state which minimizes the average loss U(β,b, ŵ), and then its
variations with respect to ŵ and bmust vanish:

∂U(β,b, ŵ)

∂wij
=

∂2

∂wij∂β
log(Z(β,b, ŵ)) = 0

∂U(β,b, ŵ)

∂bi
=

∂2

∂bi∂β
log(Z(β,b, ŵ)) = 0. (42)

We shall call this state, a state of the learning equilibrium or just the equilibrium state.
A very important property of the equilibrium, which follows from (42), is that the partition function

must be a product of two terms:

Z(β,b, ŵ) = exp(−βA(β))× exp(C(b, ŵ)) (43)

or that the total free energy must decompose into a sum of two terms:

F(β,b, ŵ)≡− 1

β
logZ(β,b, ŵ) = A(β)− 1

β
C(b, ŵ). (44)

8

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

The first term is a familiar thermodynamic free energy and, as we shall argue in the following section, the
second term is related to a complexity of the neural networks. However, the free energy obtained from (40)
(with the local objectives parameterm set for simplicity to zero) is

F(β,b, ŵ) =
1

2β

∑
i

log(1+βλi)−
N

2β
log(2π) (45)

which does not in general decompose into a sum of two terms as in (44). This suggests that in an equilibrium
some additional restrictions must be imposed on the eigenvalues λi. One possibility (that we shall verify
numerically) is that∑

λi≫β−1

log(1+βλi)≈
∑

λi≫β−1

log(λi)+N> log(β)≫
∑

λi≲β−1

βλi ≈
∑

λi≲β−1

log(1+βλi)

where N> is the number of eigenvalues λi that are much greater than β−1. Then, the free energy can indeed
be decomposed as in equation (44),

F(β,b, ŵ) ≈ 1

2β

∑
λi≫β−1

log(λi)+
N>

2β
log(β)− N

2β
log(2π) (46)

with

C(b, ŵ)≈−1

2

∑
λi≫β−1

log(λi)+
N

2
log(2π) (47)

and

A(β)≈ N>

2β
log(β). (48)

Recall that λi’s are the eigenvectors of Ĝ=
(
Î− f̂ ′ŵ

)T(
Î− f̂ ′ŵ

)
and, thus λi’s are functions of b and ŵ.

7. Thermodynamics of learning

The total Shannon entropy of the canonical ensemble can be obtained from the canonical partition function
(40):

S(β,b, ŵ) =−⟨logp⟩= β2 ∂

∂β
F(β,b, ŵ). (49)

Just like the free energy, in a learning equilibrium (42), the entropy must also decompose into a sum of two
terms:

S(β,b, ŵ) = β2 ∂

∂β

(
A(β)− 1

β
C(b, ŵ)

)
= β2 ∂A(β)

∂β
+C(b, ŵ). (50)

The first term depends only on the inverse temperature parameter β, and we shall refer to it as a
thermodynamic entropy:

S0(β) = β2 ∂A(β)

∂β
= β(U(β)−A(β)). (51)

For the total free energy (46) it is given by

S0(β) =−βA(β)+βU(β)≈−N>

2
log(β)+

N>

2

≈ N>

2
log(U)+

N>

2

(
1− log

N>

2

)
(52)

where

U(β) =− ∂

∂β
logZ(β,b, ŵ) =

∂

∂β
(βF(β,b, ŵ)) =

∂

∂β
(βA(β))≈ N>

2β
. (53)

9

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

As the learning progresses, the average loss, U(β), decreases, the temperature parameter, β−1, decreases and,
thus, according to (52), one might expect that the thermodynamic entropy, S0, should also decrease.
However, it is not the thermodynamic entropy, S0, but the total Shannon entropy S (whose exponent
describes the accessible volume of the configuration space for x) that should become smaller with learning.
We shall call it the second law of learning (or perhaps the minus second law):
Second law of learning: the total entropy of a learning system can never increase during learning and is

constant in a learning equilibrium:

d

dt
S≤ 0. (54)

In the long run the system is expected to approach an equilibrium state with the smallest possible total
entropy S, which corresponds to the lowest possible sum of the thermodynamic entropy, S0, and of the
complexity function C(b, ŵ) that we shall discuss next.

In a feedforward neural network the weight matrix, ŵ, is nilpotent (1) and, therefore, the eigenvalues of
the operator ŵ are all zeros. This also implies that the eigenvalues of the operator Î− f̂ ′ŵ are all ones, but that
does not tell us much about the eigenvalues of Ĝ. On the other hand, the determinant of Ĝ is simply related
to the determinant of Î− f̂ ′ŵ,

det Ĝ= det
(
Î− f̂ ′ŵ

)2
= 1, (55)

or ∑
i

log(λi) = 0. (56)

If we assume that near equilibrium N> does not change significantly, then a decrease in C(b, ŵ) implies that
the largest eigenvalues

∑
λi≫β−1 log(λi) of the operator Ĝmust increase and, at the same time, according to

(56), the smallest eigenvalues
∑

λi≲β−1 log(λi)must decrease. Therefore, as the learning progresses, the

operator Ĝ becomes better and better approximated by eigenvectors vi with only largest eigenvalues, i.e.

Ĝ=
∑
i

λiviv
T
i =

∑
λi≫β−1

λiviv
T
i +

∑
λi≲β−1

λiviv
T
i ≈

∑
λi≫β−1

λiviv
T
i . (57)

This is what one might call a dynamical dimensional reduction of the state space (a subspace of dimension
N> < N is sufficient to describe a state vector x), or a reduction in the complexity of interconnections
between neurons (a subspace of dimension N2

> < N2 is sufficient to describe a weight matrix ŵ) or a
complexity of computations that a given neural network performs (a subspace of dimension N2

> < N2 is

sufficient to describe a linearized evolution operator (̂I− f̂ ′ŵ)). For this reason we shall refer to C(b, ŵ) as a
measure of complexity or just complexity.

For a system transitioning between equilibrium states at constant temperature T= 1/β, variations of the
free energy must vanish, dF= 0, and then equation (44) takes the from of the first law,

dA−TdC= dU−TdS0 −TdC= 0 (58)

or what we shall call the first law of learning (or perhaps the minus first law):
First law of learning: the increment in the loss function is proportional to the increment in the

thermodynamic entropy plus the increment in the complexity:

dU= TdS0 +TdC. (59)

This law describes how the learning system behaves when transitioning between equilibrium states but,
to understand which neural architectures would be the most optimal, we must go one step further and
consider the non-equilibrium dynamics of the learning system. This is what we shall analyze in the following
sections, but before continuing we would like to briefly discuss phenomenological aspects of the
thermodynamic theory of learning.

In this section we derived the first (59) and second (54) laws of learning for a system whose partition
function is described by a Gaussian (35) in the limit when the total free energy consists of two terms (46)
which represent, respectively, the thermodynamic free energy (48) and complexity of a neural network (47).
To derive these results we had to make three assumptions. The first assumption is ergodicity, i.e. time average
is the same as ensemble average. This is a rather standard assumption in conventional statistical mechanics

10

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

which can only be proved rigorously for very simple systems, but seems to work at a phenomenological level
for a lot more general systems. We expect that within the context of the learning dynamics a similar approach
should work and, under normal conditions, the learning system can be treated at the level of statistical
ensembles. The second assumption is that the ensemble is Gaussian, which allows us to calculate the
partition function exactly, but for more general systems various interesting deviations from Gaussianity are
expected. Once again, the situation is not very different from the conventional statistical mechanics, where
many perturbative and non-perturbative methods have already been developed, and these methods can be
adopted for the analysis of the learning systems. And finally, the third assumption was that the total free
energy is a sum of the thermodynamic free energy and complexity of a neural network. This simple model
provides a good description of the learning system that is analyzed numerically in section 10, but for more
complicated systems the functional form of the total free energy would have to be modified. This is exactly
what is usually done in conventional thermodynamics, where the shape of the total free energy is modeled
phenomenologically based on the experimental data. Note that despite the fact that the first and the second
laws of thermodynamics (or in our case the first and second laws of learning) were derived for very simple
thermodynamic systems (or in our case for learning systems), it is still expected that they would work for
more general systems given that the system is ergodic. However, there are situations when the assumption of
ergodicity is broken (e.g. in the glassy phase), and then some very interesting critical phenomena can emerge.
We expect that the critical phenomena can also occur in the learning systems, but the analysis of such systems
is beyond the scope of the present study.

8. Optimal architecture

Consider a family of bias vectors b(Q) and weight matrices ŵ(Q) parametrized by dynamical parameters
Qk’s, where k∈(1, ...,K). Typically, the number of parameters K is much smaller thanN +N2 (i.e. the number
of parameters required to describe a generic vector b and a generic matrix ŵ), and the art of designing a
neural architecture is to come up with functions b(Q) and ŵ(Q) which are most efficient in finding
solutions. To make the statement more quantitative, consider an ensemble of neural networks described by a
probability distribution p(β,Q) which evolves with ‘time’ β according to the continuity equation

∂

∂β
p(β,Q) =−

∑
k

∂

∂Qk

(
dQk

dβ
p(β,Q)

)
(60)

where the parameters Qk’s evolve in the direction of the gradient of the free energy:

dQk

dβ
= α

∂F

∂Qk
= α

∑
i

∂bi
∂Qk

∂F

∂bi
+α

∑
i,j

dwij

dQk

∂F

∂wij
. (61)

The Shannon entropy of the distribution p(β,Q) with continuous variables Q (not to be confused with
entropy S(β,b, ŵ) defined in the previous section) is

S (β) =−
ˆ

dKQ p(β,Q) log(p(β,Q)) . (62)

The larger the entropy S (β), the larger the accessible volume of the configuration space exp(S (β)) and,
therefore, the larger the rate with which new solutions for b and ŵ can be found. Then, an optimal
architecture (described by b(Q) and ŵ(Q)) is the one for which the entropy destruction is minimized or,
equivalently, the entropy production is maximized. We shall call it the principle of the minimum entropy
destruction:
Principle of minimum entropy destruction: the path taken by an optimal learning system is the one for

which the entropy destruction is minimized (or the entropy production is maximized).
Note that the principle is the opposite of the minimum entropy production principle [15, 16] that is

often used within the context of non-equilibrium thermodynamics, but is consistent with the stationary
entropy production principle that was recently used within the context of emergent quantummechanics [17]
and emergent gravity [18].

Within the context of the learning systems, a useful expression for the entropy production can be
obtained from (60), (61) and (62),

∂

∂β
S (β) =− ∂

∂β

ˆ
dKQ p log(p) =−

ˆ
dKQ log(p)

∂

∂β
p

=

ˆ
dKQ log(p)

∑
k

∂

∂Qk

(
dQk

dβ
p

)
=−
ˆ

dKQ
∑
k

dQk

dβ

∂p

∂Qk

11

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

=−α

ˆ
dKQ

∑
k

∂F

∂Qk

∂p

∂Qk
= α

ˆ
dKQ

∑
k

∂2F

∂Q2
k

p

= α

ˆ
dKQ p(β,Q)∆F(β,Q) (63)

where the Laplacian operator is defined as usual∆≡
∑

k
∂2

∂Q2
k
.

To better understand the optimization condition we can choose the parameters Qi’s to be given by
eigenvalues of the operator Ĝ, i.e. Qi = λi. Then, the free energy (40) (withm set for simplicity to zero) can
be approximated as

F≈ 1

2β
logdet

(
Î+βĜ

)
≈ 1

2β

∑
i

log(1+βλi)−
N

2β
log(2π) (64)

and its Laplacian as

∆F≈ 1

2β
∆ logdet

(
Î+βĜ

)
≈ 1

2β

∑
j

∂2

∂λ2
j

∑
i

log(1+βλi)

≈−β

2

∑
i

(1+βλi)
−2

. (65)

Evidently, the Laplacian is always negative and, thus for the entropy (63) to decrease with learning, αmust be
positive or the parameters Qk’s evolve in the direction which maximizes the free energy (61). This may sound
counterintuitive (since the main objective of learning is to minimize the loss function U), but it is a mere
consequence of the decrease in the entropy S which accompanies learning (i.e. the second law of learning).
Anyway, it should be clear that to improve learning efficiency we must choose an architecture such that the
Laplacian∆F is as close to zero as possible and then the entropy destruction is minimized (i.e. the principle
of minimum entropy destruction). If we, once again, split all of the eigenvalues into large and small, then the
Laplacian is approximately given by the number N< of smallest eigenvalues λi ≪ β−1, i.e.

∆F≈−β

2

∑
λi≪β−1

(1+βλi)
−2 ≈−β

2
N<. (66)

Note that while the largest eigenvalues λi ≫ β−1 are responsible for reducing complexity of the already
obtained solutions (47), the smallest eigenvalues λi ≪ β−1 are responsible for searching for new solutions.

9. Deep vs shallow

We are now ready to tackle one of the biggest mysteries of machine learning. Why do deep neural networks
perform so well? And we are not just asking why deep neural networks work at all (which is a well-known
result known as the universal approximation theorem [19, 20]), but why and also when the neural networks
should be efficient at finding solutions. We believe the answer is hidden in the free energy F. As we have
argued in the previous section (63) the Laplacian∆F describes the rate with which the entropy S decays
and by minimizing,

−∆F=
β

2

∑
i

(1+βλi)
−2

=
β

2
Tr
(
Î+βĜ

)−2
, (67)

we maximize the efficiency of a neural network to find solutions (i.e. the principle of minimum entropy
destruction). To solve the minimization problem, we can consider a neural network with a small fraction
γ ≪ 1 of eigenvalues λi∼λ and a larger fraction 1− γ of large eigenvalues at λi ∼ λ

γ
γ−1 so that

det Ĝ=
∏
i

λi = λγNλ
γ

γ−1 (1−γ)N = 1. (68)

12

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

Figure 1. A plot of−∆F(logλ) for four different values of β= 0.25, 0.50, 0.73 and 1.00.

Then the negative of the Laplacian is

−∆F≈ β

2
Tr
(
Î+βĜ

)−2
=

Nβ

2

 γ

(1+βλ)
2 +

1− γ(
1+βλ

γ
γ−1

)2
 . (69)

In figure 1 we plotted−∆F(logλ) for four different values of the inverse temperature parameter
β= 0.25, 0.50, 0.73, 1.00, γ= 1/3 and N = 854. In the initial phase, β < 1/2 (e.g. the blue line in figure 1),

there is a stable local minimum at logλ≈ 3 log
(
− 1

2 +
√

1
4 +

1
β

)
and an unstable maximum at logλ= 0. In

this phase, a small number, Nγ ≪ N, of eigenvalues is free to move away from a local maximum at logλ= 0
to both smaller and larger values, but most of the eigenvalues N(1− γ)∼N should remain near logλ∼ 0. In
the intermediate phase, 1/2< β <

√
N− 1 (e.g. the green line in figure 1), the two extreme points switch

and there is an unstable maximum at

logλ= 3 log

(
−1

2
+

√
1

4
+

1

β

)
. (70)

In this phase only a decreasing fraction, γ < (β+ 1)−2, of the small eigenvalues, logλ <

3 log
(
− 1

2 +
√

1
4 +

1
β

)
, can still move to even smaller values, but the motion is terminated when

the smallest values, logλ≪ 3 log
(
− 1

2 +
√

1
4 +

1
β

)
, reach the plateau. However, since det Ĝ= 1, it is

expected that the sum of the largest eigenvalues would continue to grow and, according to (47), the
complexity of a network should continue to decrease. And finally, in the final phase, β >

√
N− 1 (e.g. the

red line in figure 1), the global minimum is at logλ= 0, the individual eigenvalues can no longer move
toward logλ=−∞ and the ability of the neural network to learn becomes exponentially suppressed.

This is what happens in an optimal system; however, by enforcing an architecture on a neural network
(e.g. deep or shallow) we impose additional constraints on the free energy (and on its Laplacian), which
limits the ability of a network to explore the space of solutions. For example, in a feedforward neural network
with many input neurons and few output/hidden neurons, most of the eigenvalues are set to logλi = 0 and
only a small fraction of eigenvalues are free to move to smaller and larger values. Clearly, the larger the
number of dynamical eigenvalues a neural architecture has, the better it is for learning. Therefore, to
compare ‘apples to apples’ we must first fix the number of the dynamical eigenvalues, and then look for an
architecture which is flexible enough to support a skewed distribution of logλi’s. As we have argued in the
previous paragraph, what we want is to be able to start with a single peak with all eigenvalues at logλi∼0 and
then to gradually grow a second peak with the largest eigenvalues logλi ≳ 0>− logβ, which is to be

13

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

balanced by the smallest eigenvalues logλi <− logβ that are dragged to smaller and smaller values. With
respect to this, a better architecture is the one which supports a larger variance

µ2 ≡ Tr
(
log Ĝ

)2
(71)

and a more skewed distribution or a more negative

µ3 ≡ Tr
(
log Ĝ

)3
. (72)

In a feedforward neural network the weight matrix is nilpotent (1) as well as a product of the weight matrix,
ŵ, and a diagonal matrix of first derivatives, f̂ ′, i.e.(̂

f ′ŵ
)n

=
(
ŵT̂f ′

)n
= 0 ∀n≥ L (73)

where L is the number of layers. For starters, consider a very shallow network with no hidden layers (i.e.

L= 2) and thus
(
ŵT̂f ′

)2
=
(̂
f ′ŵ
)2

= 0. Then, functions F1(x) and F2(x) must exist such that

log Ĝ= F1(̂f
′ŵŵT̂f ′) f̂ ′ŵ+ F2(ŵ

T̂f ′̂f ′ŵ)ŵT̂f ′. (74)

and, therefore,

Tr
[
log Ĝ

]
= 0

Tr

[(
log Ĝ

)2]
= Tr

[
F2(ŵ

T̂f ′̂f ′ŵ)ŵT̂f ′F1(̂f
′ŵŵT̂f ′) f̂ ′ŵ+ F1(̂f

′ŵŵT̂f ′) f̂ ′ŵF2(ŵ
T̂f ′̂f ′ŵ)ŵT̂f ′

]
(75)

and

µ3 = Tr

[(
log Ĝ

)3]
= 0. (76)

In fact, the traces of all odd powers must also be zero:

Tr

[(
log Ĝ

)2n+1
]
= 0 (77)

since every term in
(
log Ĝ

)2n+1
would have a product of unequal number of F1(̂f ′ŵŵT̂f ′) f̂ ′ŵ and

F2(ŵT̂f ′̂f ′ŵ)ŵT̂f ′ terms which must be traceless. As we shall see in the next section, even with a single hidden
layer (i.e. L= 3) the second powers of operators f̂ ′ŵ and ŵT̂f ′ are very small and the skewness is still very
small, µ3≈0. What this means is that the effective number of dynamical eigenvalues is half of what it would
have been if all eigenvalues were free to move without having to respect the symmetry of the distribution.
However, as we keep adding more hidden layers the skewness of distribution grows larger, the eigenvalues
become less constrained and the efficiency of learning is greatly improved. This might be why the deep
learning is so efficient: hidden layers are essential for larger skewness µ3 and, as a result, for less negative
Laplacian∆F (and a slower decay of the entropy S), which we claim is necessary for efficient learning.

10. Numerical experiments

A direct numerical calculation of the distribution p(x) is a computationally intensive task, but the main
advantage of our statistical description is that the canonical ensemble (26) can be viewed as a purely
phenomenological object. Then, the main problem should be to come up with a model of the bulk loss
function, H(x,b, ŵ), which best describes the canonical ensemble and, consequently, the canonical partition
function, Z(β,b, ŵ), and other thermodynamic quantities. On the other hand, the analysis of the preceding
sections already suggests certain forms of the bulk loss function and of the partition function, which we can
easily verify numerically. In this section, we will check to what extent a feedforward neural network can be
modeled by the bulk loss function without local objectives (i.e. (16) withm= 0) or with the corresponding
thermodynamic quantities:

14

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

(a) average bulk loss (estimated in (53)),

U(β) =
N>

2β
, (78)

(b) complexity function (estimated in (47)),

C(b, ŵ) =−1

2

∑
λi≫β−1

log(λi)+
N

2
log(2π)+ const, (79)

(c) thermodynamic entropy (estimated in (52)),

S0(β) =−N>

2
log(β)+ const=

N>

2
log(U)− N>

2
log

(
N>

2

)
+ const, (80)

where N> is the number of eigenvalues λi’s much larger than β−1. In addition, we will verify the expec-
ted dynamics of the eigenvalues and the anticipated dependence of the variance (71) and skewness (72)
parameters on the performance of the neural networks obtained in the previous sections.

All of the numerical experiments were carried out using the TensorFlow Python library [21] and MNIST
database of handwritten images [22]. Unfortunately, in the TensorFlow library the hidden layers are not
dynamical and must be set prior to training. Nevertheless, we were able to obtain the desired results by
running two different programs: the first one with two hidden layers (or what we shall call a ‘deep’ neural
network), and one with a single hidden layer (or what we shall call a ‘shallow’ neural network). In the deep
network we used an input layer with 784 neurons, the first hidden layer with 40 neurons, the second hidden
layer with 20 neurons and the output layer with 10 neurons; and in the shallow network we used the same
number of neurons on the input and output layers (i.e. 784 and 10), but only a single hidden layer with 60
neurons. Altogether there are N= 784+ 40+ 20+ 10= 784+ 60+ 10= 854 neurons in each neural
network, and so the state vectors x and the bias vectors b are 854-dimensional vectors. The weight matrix ŵ
has 854× 854 components wij, but most of them are zero due to the predetermined architecture of hidden
layers. The input layers represent a handwritten image of a number from 0 to 9 which is passed to
28× 28= 784 input neurons. One of the 10 output neurons is to be activated only if the corresponding
number is on the image. The activation function on all neurons is f (y)= tanh(y), and so the diagonal matrix
f̂ ′ has diagonal elements given by

f ′ii(yi) =
df(yi)

dyi
=

dtanh(yi)

dyi
= sech(yi)

2 = 4(exp(yi)+ exp(−yi))
−2. (81)

The training was carried out using the SGD method for 30 000 epochs with 6000 samples in the training
dataset. We have also tried other optimizers such as Adam, but the results were essentially the same.

In figure 2 we plot (the log of the ensemble-averaged) bulk loss U= ⟨H⟩ (blue line) and (the log of the
ensemble-averaged) boundary loss U∂ = ⟨H∂⟩ from the deep neural network. As expected, the bulk loss
remains a few orders of magnitude smaller than the boundary loss, but both functions decrease with time. To
train the neural network we used the (more familiar, but less general) boundary loss function H∂ , but a
similar result is expected even if the (less familiar, but more general) bulk loss function H had been used
instead. In figure 3 we plot the bulk loss logU vs the boundary loss logU∂ from the same deep network. Note
that at late times the bulk loss keeps decreasing, while the boundary loss remains almost constant (inside the
red oval in figure 3). This behavior continues for about 10 000 (!) training epochs until the network finally
finds a better solution and the boundary loss jumps to a smaller value (inside the green oval in figure 3). And
then essentially the same behavior continues, i.e. bulk loss decreases monotonically, but boundary loss makes
sudden jumps. There is a simple explanation for the phenomena. The boundary loss is stuck in a saddle point
with a large number of nearly flat directions for a very long time before it finds a way out. As the learning
progresses the system keeps moving along the flat directions and that does not reduce the boundary loss
considerably, but the bulk loss and, as we shall see shortly, complexity keep decreasing at roughly the same
pace. This shows that the bulk loss function has far fewer flat directions and, in this respect, a much better
loss function. In addition, as we have argued in section 3, it can be defined beyond supervised systems, e.g.
for unsupervised learning.

In figures 4 and 5 we plot histograms of the dynamical eigenvalues of the operator log Ĝ from the,
respectively, shallow and deep networks. As expected, most of the eigenvalues remain near the origin and
only a fraction of the eigenvalues are displaced significantly from logλi ∼ 0. The distribution of the
eigenvalues in the shallow network is almost completely symmetric, the skewness after 10 000 epochs is

15

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

Figure 2. Bulk loss (blue line) and boundary loss (red line) for 30 000 training epochs.

Figure 3. Bulk loss vs boundary loss for 30 000 training epochs.

µ3 ≈−2.7× 10−10, the learning efficiency is suppressed and, as a result, the variance remains small,
µ2 ≈ 1.84. In contrast, the distribution of eigenvalues in the deep network is not symmetric, the skewness
after 10 000 epochs is more negative µ3≈ − 1.7, the learning efficiency is enhanced and the variance grows
larger, µ2 ≈ 2.44. There is a clear gap between the smallest and larger eigenvalues (marked by red arrows in
figure 5), which can be seen after 10 000 epochs at logλ≈− 3.0, after 1000 epochs at logλ ≈ −2.5 and
maybe even after 100 epochs at logλ ≈ −2.3. This gap is expected to be at an unstable maximum defined by
equation (70), which implies that after 100 epochs β ≈ 1.37, after 1000 epochs β≈ 1.40 and after 10 000

16

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

Figure 4. Histograms of eigenvalues of the operator log Ĝ from a shallow network.

Figure 5. Histograms of eigenvalues of the operator log Ĝ from a deep network.

17

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

Figure 6. Complexity C(b, ŵ) of a deep neural network as a function of the number of training epochs.

epochs β≈ 1.47. In the shallow network the gap cannot be clearly identified since it is closer to the origin and
the inverse temperature parameter β is smaller. Also, note that while the smallest eigenvalues move to smaller
values, to satisfy (56) the largest eigenvalues must move to larger values. Recall that the largest eigenvalues
describe the complexity of the network (79) and the increase in the largest eigenvalues represents a decrease
in the complexity of the network.

In the previous paragraph, we estimated the values of β by identifying a gap (marked by red arrows in
figure 5) between the smallest eigenvalues and the rest. However, as one can see from figure 5 the smallest
eigenvalues logλi <− logβ keep moving to smaller values together with−logβ. This suggests that (instead
of using equation (79)) we can try to define an approximate complexity by a sum of a fixed number of the
largest eigenvalues,

Cn(b, ŵ) =−1

2

n∑
i=1

log(λi)+
N

2
log(2π), (82)

where it is assumed that the eigenvalues are ordered λ1 ≥ λ2 ≥ ·· · ≥ λN. In figure 6 we plot two (limiting)
complexities by summing over 20 of the largest eigenvalues, C20(b, ŵ) (blue line), and by summing over all
but 20 of the smallest eigenvalues, C834(b, ŵ) (red line). Evidently, up to an additive constant, the behavior of
both curves is similar and so either one (or anyone in-between) can be used to study a relaxation of the
system toward equilibrium. In figure 7 we plot the same complexities, but as a function of the bulk loss logU.
Both functions are nearly linear with slopes of order one: C20(b, ŵ)≈ 769+ 1.25 logU for the blue line, and
C834(b, ŵ)≈ 772+ 1.41 logU for the red line. In fact, the linear dependence is in agreement with the second
law of learning (54), which states that the total entropy must decay with learning. Recall the total entropy is a
sum of the complexity (79) and thermodynamic entropy (80) (which scales linearly with logU whenever N>

remains constant), and so it is expected that both quantities would decay at roughly the same rate.
There are certainly many other numerical experiments that we could have done, but it should already be

evident that the statistical description developed in the paper might actually reveal what is happening behind
the scenes in machine learning. We now switch to the most speculative part of the paper by asking if the
entire Universe at its most fundamental level could be described by a neural network. In the following
sections, we shall only describe the main idea, and an interested reader is referred to [26, 27] for a more
in-depth analysis of the proposal.

11. Entropic mechanics

Quantum mechanics is a remarkably successful paradigm for modeling physical phenomena observed ver a
wide range of scales ranging from 10−19 m (i.e. high-energy experiments, e.g. [28]) to 10+26 m (i.e.

18

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

Figure 7. Complexity C(b, ŵ) of a deep neural network as a function of the bulk loss logU.

cosmological observations, e.g. [29].) The paradigm is so successful that it is widely believed that at the most
fundamental level the entire Universe is governed by the rules of quantummechanics and even gravity should
somehow emerge from it. This is known as the problem of quantum gravity that so far has not been solved,
but some progress has been made within the context of AdS/CFT correspondence [30–32], emergent gravity
[18, 33, 34], quantum entanglement [35–37] and holographic complexity [23–25]4. Although extremely
important, the problem of quantum gravity is not the only problem with quantum mechanics. The quantum
framework also starts to fall apart with the introduction of observers. Everything seems to work very well
when observers are kept outside a quantum system, but it is far less clear how to describe macroscopic
observers in a quantum system such as the Universe itself. The realization of the problem triggered an
ongoing debate on the interpretations of quantum mechanics, which remains unsettled to this day. On one
side of the debate, there is an increasing number of proponents of the many-worlds interpretation claiming
that everything in the Universe (including observers) must be governed by the Schrödinger equation [38],
but then it is not clear how classical probabilities would emerge. On the other side of the debate, there are
proponents of the hidden variables theories [39], but there it is also unclear what is the role of the wave
function in a purely statistical system. It is important to emphasize that a working definition of observers is
necessary not only for settling some philosophical debates, but for understanding the results of real physical
experiments and cosmological observations. In particular, a self-content, paradoxes-free definition of
observers would allow us to understand the significance of Bell’s inequalities [41] and to make probabilistic
prediction in cosmology [42]. In the absence of such a definition, the so-called Copenhagen interpretation is
often adopted, which is based on a clear cut between the observer and the system, modeled using quantum
mechanics [40]. This works very well within the context of, for example, condensed matter and high-energy

4There seems to be an interesting connection between thermodynamics of learning systems (see section 7) and thermodynamics of
holographic complexity. In [24] the authors showed that the quantum computational complexity of a holographic state on the anti-de
Sitter boundary is due to an action over a Wheeler–DeWitt patch in the bulk. In the learning systems, the complexity function C(b, ŵ) is
the quantity which best describes the complexity of a boundary state (for example, in a feedforward network C(b, ŵ) is the complexity
of a neural network which maps the input boundary data to output boundary data with the smallest error), and a thermodynamic free
energy A(β) is the quantity which best describes the state of the local degrees of freedom in the bulk. According to the first law of learning
(59) the two quantities are in fact related, if not in an absolute sense, then at least in a relative sense, i.e.

dA= dU−TdS0 = TdC. (83)

Also, note that even the second law of learning (54) is somewhat related to the recently proposed second law of complexity of quantum
states [25], with themain difference that during learning the complexityC decreases not on its own, but together with the thermodynamic
entropy S0. This suggests that there might be a deep connection between learning systems and holographic systems that we still have not
figured out.

19

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

experiments, where the observer remains outside the system, but is not satisfactory within the context of
cosmology and quantum gravity, where observers are essential parts of the system.

To resolve the apparent inconsistency (or incompleteness) in our description of the physical world, we
shall entertain a (not so new) idea of having a more fundamental theory than quantum mechanics. A
working hypothesis is that at the most fundamental level the dynamics of the entire Universe are described by
a microscopic neural network. If correct, then not only macroscopic observers should emerge from the
microscopic neural network (see, for example, [43]) but, more importantly, the equations of quantum
mechanics and general relativity should correctly describe the emergent dynamics of the corresponding
learning system. Our main goal in this section is to show that quantum mechanics (or, more precisely, the
Schrödinger equation) indeed provides a good description of an optimal neural network not too far from an
equilibrium, and we postpone the discussion on general relativity until the next section. Note that most of
the results in the remainder of this section were originally obtained in [17], but in a slightly different context
and with slightly different assumptions.

Recall that equation (60) describes the evolution of a probability distribution p(β,Q) where Qk’s (for
k∈(1, ...,K)) parametrize the weight matrix ŵ(Q) and the bias vector b(Q). The equation works
well away from an equilibrium, but at an equilibrium the first derivatives of the free energy remain
small,

dQk

dβ
= α

∂F

∂Qk
, (84)

and the dominant contribution to the entropy production comes from ‘diffusion’. Then, we can study
evolution of the system along the equilibrium manifold of dimension K− K̃≪ K (i.e. the number of
‘Goldstone’ modes is K− K̃) defined by a (degenerate) maximum of the free energy F(Q). More precisely, the
equilibrium manifold can be described by

dF(t,Q)

dt
=

∂F(t,Q)

∂t
+
∑
k

dQk

dt

∂F(t,Q)

∂Qk

=
∂F(t,Q)

∂t
+α

∑
k

(
∂F(t,Q)

∂Qk

)2

= 0 (85)

where the first term represents the change in the free energy due to the dynamics of xi’s, and the second term
represents the change in the free energy due to the dynamics of Qk’s. Note that instead of studying the
dynamics in β we switched to a new parameter t (e.g. the number of training epochs) for which the dynamics
in small time scales can be approximated by a Fokker–Planck equation

∂p(t,Q)

∂t
≈ D

2

∑
k

∂2p(t,Q)

∂Q2
k

=
D

2
∆p(t,Q) (86)

with a time-independent diffusion coefficient D. However, in longer time scales the diffusion must be
constrained to satisfy (85), but in our statistical description we shall only demand that it is satisfied on
average, i.e.

ˆ
dKQ p(t,Q)

(
∂F(t,Q)

∂t
+α

∑
k

(
∂F(t,Q)

∂Qk

)2
)

= 0. (87)

For simplicity, we also assume that the diffusion coefficient D does not depend on Q, and so no factor
ordering problems arise. Then, the main problem is to solve for p(t,Q) subject to constraint (87), which is
exactly the type of problem considered in [17]. There it was shown that constrained dynamics can often be
described by an approximate Schrödinger equation if the so-called principle of stationary entropy
production is satisfied:
Principle of stationary entropy production: the path taken by the system is the one for which the entropy

production is stationary.
However, in section 8 we argued that in an optimal architecture a closely related principle (of minimum

entropy destruction) should be satisfied and, therefore, all that we need to assume is that the microscopic
neural network has an optimal architecture.

The optimization problem can then be solved by combining, into a single functional S(p,F), two terms:
the total entropy production from time t= 0 to time t=T, and constraint (87) imposed by the
time-dependent free energy, i.e.

20

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

S(p,F) =−
ˆ T

0
dt

d

dt

ˆ
dKQ p log(p)+

ˆ T

0
dt

ˆ
dKQp

(
∂F

∂t
+α

∑
k

(
∂F

∂Qk

)2
)

=

ˆ T

0
dt

ˆ
dKQ

(
− log(p)

D

2

∑
k

∂2p

∂Q2
k

+ p

(
∂F

∂t
+α

∑
k

(
∂F

∂Qk

)2
))

. (88)

After integrating by parts and ignoring the boundary terms (assuming that p vanishes at the boundaries of
integration) we obtain

S(p,F) =
ˆ T

0
dt

ˆ
dKQ

(
2D
∑
k

(
∂
√
p

∂Qk

)2

+ p

(
∂F

∂t
+α

∑
k

(
∂F

∂Qk

)2
))

=

ˆ T

0
dt

ˆ
dKQ

√
p

(
−2D

∑
k

∂2

∂Q2
k

+α
∑
k

(
∂F

∂Qk

)2

+
∂F

∂t

)
√
p

=

ˆ T

0
dt

ˆ
dKQ Ψ∗

(
−2D∆− i

√
2D

α

d

dt

)
Ψ (89)

where the wave function is defined as

Ψ(t,Q)≡
√

p(t,Q)exp

(
i

√
α

2D
F(t,Q)

)
. (90)

Evidently, upon varying (89) we arrive at a Schrödinger equation:

− i
d

dt
Ψ(t,Q) =

√
2Dα∆Ψ(t,Q) (91)

whose solutions extremize the functional S(p,F) or, in other words, describe a trajectory in the
configuration space which minimizes entropy destruction. (See [17] for details.) Therefore, we conclude that
quantum mechanics (or at least the Schrödinger equation) can in fact emerge from a microscopic neural
network with an optimal architecture near equilibrium.

12. Emergent gravity

Now we turn to gravity5. If the microscopic neural network has an optimal architecture then it is still the case
that the principle of minimum entropy destruction (or, the more general, principle of stationary entropy
production) should be satisfied, and so the relevant quantity to extremize is still (88), which contains both
entropy production (first term) and constraints (second term). What is, however, different is that we must
allow for the larger system to be further away from a learning equilibrium, and so the number of constraints
can be much smaller than the number of parameters K. In other words, the dimensionality of the
equilibrium manifold (or, if you wish, the number of symmetries) remains very high. This implies that the
probability distribution p(t,Q) should have a higher degree of symmetry and thus can be parametrized
p(ĝ,Q) with a (relatively) small number of auxiliary parameters ĝ(t). For example, if the probability

distribution is parametrized by Gaussian distributions, p(ĝ(t),Q)∝ exp
(
−
∑

k,k ′ gkk ′(t)QkQk ′

)
, then the

optimization problem is to find ĝ(t) andΦ(t,Q) which extremize (88):

S(ĝ,Φ) =

ˆ T

0
dt
∑
k

⟨
−D

2

∂2 logp(ĝ(t),Q)

∂Q2
k

⟩
+

ˆ T

0
dt⟨L(ĝ(t),Φ(t,Q)⟩ . (92)

The first term represents the entropy production and depends only on ĝ, and the second term represents
constraints and depends on both ĝ and some parametersΦ(t,Q) which enforce the constraints. (For
example, in the previous sectionΦ(t,Q) was given by free energy F(t,Q) which is to be extremized in an
equilibrium.)

This is what might be happening on a microscopic level, but our task in this section is to only develop a
phenomenological model of gravity based on what we already know about general relativity. In gravitational

5As far as we know the only attempt to describe gravity in terms of quantum neural networks was made in [44]. However, the main
difference with our approach is that the microscopic neural network considered here is not quantum, but statistical. On the other hand,
as we have argued in section 11, the quantum behavior of the microscopic neural network is expected and so it is possible that the two
systems are equivalent.

21

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

theories the dynamical degrees of freedom are described by a metric tensor gµν(x) and other fields Φ(x), all
of which are functions of four space-time coordinates x= (x0,x1,x2,x3). From that perspective a better
parametrization of the probability distribution is given by gµν(x) and of the constraints by Φ(x). Then (92)
can be expressed phenomenologically as

S(gµν ,Φ) =
ˆ

dD+1x
√
|g|
(
− 1

2κ
R(gµν(x))+Λ

)
+

ˆ
dD+1x

√
|g| L(gµν(x),Φ(x)) (93)

where, as before, the first term represents the entropy production and the second term represents the
constraints. Several comments are in order. Firstly, in equation (92) the parameter ĝ was a finite dimensional
matrix, but in equation (93) the parameter gµν(x) is a continuous function, and so at best it is an
approximate mapping which should break down at some UV scale (e.g. Planck scale). Secondly, even if the
metric tensor gµν(x) is defined only on some very fine-grained lattice, there is a sense of distance between
gravitational degrees of freedom, which is not present in a neural network. This would be true for a general
learning system, but we expect that for a clever choice of local objectives the weight matrix ŵ (which is also
an adjacency matrix describing the strength of connections between neurons) could be attracted toward a
three-dimensional lattice (see [45] for a possible mechanism) and then the space-time locality would emerge.
Thirdly, any lattice-like structure would break a general covariance, which is known to be a very precise
symmetry of nature. Therefore, we must also assume that the local objectives of neurons are such that the
general covariance would emerge on large scales (see [46] for a possible mechanism), but exactly how this
might work is presently unknown.

In the remainder of this section we shall closely follow a phenomenological procedure outlined in [18].
We first expand the entropy production term in (93) around equilibrium, i.e.

1

2κ
R= gαβ,µJ

µαβ (94)

where the fluxes are denoted by Jkαβ and the generalized forces are taken to be6

gαβ,µ ≡ ∂gαβ
∂xµ

. (95)

Then, we can expand fluxes around local equilibrium to the linear order in generalized forces

Jµαβ = Lµν αβ γδgγδ,ν (96)

to obtain

1

2κ
R= Lµν αβ γδgαβ,µgγδ,ν . (97)

One can think of (97) as a defining equation for the Onsager tensor, but then we are forced to only consider
Onsager tensors Lµν αβ γδ that are symmetric under interchanges (µ,α,β)↔ (ν,γ,δ), i.e.

Lµν αβ γδ = Lνµ βα δγ . (98)

These are the Onsager reciprocity relations [47] for our learning system, but there are also other (trivial)
symmetries that one should impose (α)↔ (β), (γ)↔ (δ), due to symmetries of the metric, i.e.

Lµν αβ γδ = Lµν (αβ) (γδ). (99)

The overall space of such tensors is still quite large, but it turns out that a very simple choice leads to general
relativity:

Lµν αβ γδ =
1

8κ

(
gανgβδgµγ + gαγgβνgµδ − gαγgβδgµν − gαβgγδgµν

)
. (100)

After integrating by parts, neglecting boundary terms and collecting all other terms we get

ˆ
dD+1x

√
|g| 1

2κ
R=

ˆ
dD+1x

√
|g|gµν 1

κ

(
Γα

ν[µ,α] +Γβ
ν[µΓ

α
α]β

)

6 Summations over repeated indices are implied everywhere in this section.

22

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

=

ˆ
dD+1x

√
|g| 1

8κ

(
gανgβδgµγ + gαγgβνgµδ − gαγgβδgµν − gαβgγδgµν

)
gαβ,µgγδ,ν (101)

where

Γµ
γδ ≡

1

2
gµν (gνγ,δ + gνδ,γ − gγδ,ν) and Γα

µν,β ≡ ∂

∂xβ
Γα

µν . (102)

Therefore, upon varying (93) with respect to the metric gµν we get the Einstein equations

Rµν −
1

2
Rgµν +Λgµν = κTµν (103)

where the Ricci tensor is

Rµν ≡ 2
(
Γα

ν[µ,α] +Γβ
ν[µΓ

α
α]β

)
(104)

and the energy-momentum tensor is

Tµν ≡− 2√
|g|

δ(
√
|g|L)

δgµν
. (105)

(See [18] for details.) Of course, the expectations are that this result would only hold near equilibrium, and
there should be deviations from general relativity when some of the symmetries in the Onsager tensor (100)
are broken.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

I would like to express my sincere gratitude to my former teacher, Walter Johnson, who introduced me to the
subject of artificial neural networks. This work was supported in part by the Foundational Questions
Institute (FQXi).

ORCID iD

Vitaly Vanchurin https://orcid.org/0000-0002-9496-9212

References

[1] Saxe A M, McClelland J L and Ganguli S 2014 Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
The Int. Conf. on Learning Representations

[2] Choromanska A, Henaff M, Mathieu M, Arous G and LeCun Y 2015 The loss surfaces of multilayer networks Proc. 18th Int. Conf.
on Artificial Intelligence vol 38

[3] Kadmon J and Sompolinsky H 2016 Optimal architectures in a solvable model of deep networks Advances in Neural Information
Processing Systems

[4] Shwartz-Ziv R and Tishby N 2017 Opening the black box of deep neural networks via information (arXiv:1703.00810[cs.LG])
[5] Advani M S, Saxe A M 2017 High-dimensional dynamics of generalization error in neural networks (arXiv:1710.03667)
[6] Lin HW, Tegmark M and Rolnick D 2017 Why does deep and cheap learning work so well? J. Stat. Phys. 168 1223–47
[7] Galushkin A I 2007 Neural Networks Theory (Berlin: Springer) p 396
[8] Schmidhuber J 2015 Deep learning in neural networks: an overview Neural Netw. 61 85–117
[9] Haykin S S 1999 Neural Networks: A Comprehensive Foundation (Englewood Cliffs: Prentice-Hall)
[10] Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl Acad. Sci.

79 2554–8
[11] Hopfield J J 1984 Neurons with graded response have collective computational properties like those of two-state neurons Proc. Natl

Acad. Sci 81 3088–92
[12] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborova L 2019 Machine learning and the

physical sciences Rev. Mod. Phys. 91 045002
[13] Jaynes E T 1957 Information theory and statistical mechanics Phys. Rev. II 106 620–30
[14] Jaynes E T 1957 Information theory and statistical mechanics II Phys. Rev. II 108 171–90
[15] Prigogine I 1947 Etude thermodynamique des phénoménes irréversibles Desoer, Liége
[16] Klein M J and Meijer P H E 1954 Principle of minimum entropy production Phys. Rev. 96 250–5
[17] Vanchurin V 2019 Entropic mechanics: towards a stochastic description of quantum mechanics Found. Phys. 50 40
[18] Vanchurin V 2018 Covariant information theory and emergent gravity Int. J. Mod. Phys. A 33 1845019
[19] Cybenko G 1989 Approximations by superpositions of sigmoidal functionsMath. Control, Signals, Syst. 2 303–14

23

https://orcid.org/0000-0002-9496-9212
https://orcid.org/0000-0002-9496-9212
https://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1710.03667
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1007/s10955-017-1836-5
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1103/PhysRev.96.250
https://doi.org/10.1103/PhysRev.96.250
https://doi.org/10.1007/s10701-019-00315-6
https://doi.org/10.1007/s10701-019-00315-6
https://doi.org/10.1142/S0217751X18450197
https://doi.org/10.1142/S0217751X18450197
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Mach. Learn.: Sci. Technol. 2 (2021) 035012 V Vanchurin

[20] Hornik K 1991 Approximation capabilities of multilayer feedforward networks Neural Netw. 4 251–7
[21] Abadi M et al 2016 Tensorflow: a system for large- scale machine learning 12th Symp. on Operating Systems Design and

Implementation (OSDI 16) pp 265–83
[22] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document recognition Proc. IEEE 86 2278–324
[23] Brown A R, Roberts D A, Susskind L, Swingle B and Zhao Y 2016 Holographic complexity equals bulk action? Phys. Rev. Lett.

116 191301
[24] Brown A R, Roberts D A, Susskind L, Swingle B and Zhao Y 2016 Complexity, action and black holes Phys. Rev. D 93 086006
[25] Brown A R and Susskind L 2018 Second law of quantum complexity Phys. Rev. D 97 086015
[26] Vanchurin V 2020 The world as a neural network Entropy 22 1210
[27] Katsnelson M I and Vanchurin V Emergent quantumness in neural networks (arXiv:2012.05082[quant-ph])
[28] Zyla P A et al (Particle Data Group) 2020 Review of particle physics PTEP 2020 083C01
[29] Aghanim N et al (Planck) 2020 Planck 2018 results. I. Overview and the cosmological legacy of Planck Astron. Astrophys. 641 A1
[30] Maldacena J M 1999 The large N limit of superconformal field theories and supergravity Int. J. Theor. Phys. 38 1113
[31] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253
[32] Susskind L 1995 The world as a hologram J. Math. Phys. 36 6377
[33] Jacobson T 1995 Thermodynamics of space-time: the Einstein equation of state Phys. Rev. Lett. 75 1260
[34] Verlinde E P 2011 On the origin of gravity and the laws of Newton JHEP 1104 029
[35] Ryu S and Takayanagi T 2006 Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602
[36] Swingle B 2012 Entanglement renormalization and holography Phys. Rev. D 86 065007
[37] Almheiri A, Dong X and Harlow D 2015 Bulk locality and quantum error correction in AdS/CFT JHEP 1504 163
[38] Everett H 1957 Relative state formulation of quantum mechanics Rev. Mod. Phys. 29 454–62
[39] Bohm D 1952 A suggested interpretation of the quantum theory in terms of ‘hidden variables’ I Phys. Rev. 85 166–79
[40] Bohr N 1928 The quantum postulate and the recent development of atomic theory Nature 121 580?590
[41] Bell J 1964 On the Einstein Podolsky Rosen paradox Physics 1 195–200
[42] Vanchurin V, Vilenkin A and Winitzki S 2000 Predictability crisis in inflationary cosmology and its resolution Phys. Rev. D

61 083507
[43] Tononi G 2008 Consciousness as integrated information: a provisional manifesto Biol. Bull. 215 216–42
[44] Dvali G 2018 Black holes as brains: neural networks with area law entropy Fortsch. Phys. 66 1800007
[45] Vanchurin V 2018 Information graph flow: a geometric approximation of quantum and statistical systems Found. Phys. 48 636
[46] Vanchurin V 2019 A quantum-classical duality and emergent space-time 10th Mathematical Physics Meeting pp 347–66
[47] Onsager L 1931 Reciprocal relations in irreversible processes, I Phys. Rev. 37 405–26

24

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.3390/e22111210
https://doi.org/10.3390/e22111210
https://arxiv.org/abs/2012.05082
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1038/121580a0
https://doi.org/10.1038/121580a0
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevD.61.083507
https://doi.org/10.1103/PhysRevD.61.083507
https://doi.org/10.2307/25470707
https://doi.org/10.2307/25470707
https://doi.org/10.1002/prop.201800007
https://doi.org/10.1002/prop.201800007
https://doi.org/10.1007/s10701-018-0166-z
https://doi.org/10.1007/s10701-018-0166-z
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.37.405

	Toward a theory of machine learning
	1. Introduction
	2. Neural septuple
	3. Supervised vs unsupervised
	4. Statistical ensembles
	5. Partition function
	6. Learning equilibrium
	7. Thermodynamics of learning
	8. Optimal architecture
	9. Deep vs shallow
	10. Numerical experiments
	11. Entropic mechanics
	12. Emergent gravity
	Acknowledgments
	References

