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Abstract
In this work we demonstrate the use of neural networks for rapid extraction of signal parameters of
discretely sampled signals. In particular, we use dense autoencoder networks to extract the
parameters of interest from exponentially decaying signals and decaying oscillations. By using a
three-stage training method and careful choice of the neural network size, we are able to retrieve
the relevant signal parameters directly from the latent space of the autoencoder network at
significantly improved rates compared to traditional algorithmic signal-analysis approaches. We
show that the achievable precision and accuracy of this method of analysis is similar to
conventional algorithm-based signal analysis methods, by demonstrating that the extracted signal
parameters are approaching their fundamental parameter estimation limit as provided by the
Cramér–Rao bound. Furthermore, we demonstrate that autoencoder networks are able to achieve
signal analysis, and, hence, parameter extraction, at rates of 75 kHz, orders-of-magnitude faster
than conventional techniques with similar precision. Finally, our exploration of the limitations of
our approach in different computational systems suggests that analysis rates of>200 kHz are
feasible using neural networks in systems where the transfer time between the data-acquisition
system and data-analysis modules can be kept below∼3 µs.

1. Introduction

Machine learning (ML) is becoming a widespread method for the generation, and analysis of big data. ML
uses networks of interconnected neurons (i.e. neural networks) that, much like real brains, recognize patterns
in data structures [1, 2]. Generally, these neural networks are first trained in situations where the desired
action/output of the network is known and subsequently used in similar, real-world situations. Research
fields where a precise mathematical description of the problem is difficult—if not impossible—stand much
to gain from implementing ML solutions. Areas such as image processing [3, 4] or text generation and
analysis [5] have seen innovations that would not have been possible without the implementation of ML.

In physical sciences, ML-based techniques are becoming more and more widespread (see [6] for an
extended review). Besides unlocking completely new innovations, ML techniques have been utilized in
situations where finding solutions to physical problems requires a lot of computing effort using conventional
methods. For example, in fluid simulations where normally one is required to solve the Navier–Stokes
equations, ML can be used to accurately predict the evolution of a fluid simulation [7], while reducing the
amount of computation time of these complex simulations significantly. Furthermore, neural networks have
been used to simulate light scattering by multi-layer nanoparticles and the subsequent design of these
nanoparticles using backpropagation [8]. In spectroscopy, machine learning is used to accurately classify
physical objects based on noisy/complex spectroscopic data [9–11]. Another field where ML techniques find
their way is in experiments with extremely high inference rates and low latency constraints, such as in
high-performance detector triggers [12] (e.g. the ATLAS experiment at the LHC at CERN). In these
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experiments, field-programmable gate array (FPGA) implementations of ML techniques are used to create
complex hardware triggers for events with sub-microsecond lifetimes.

However, ML techniques are notoriously opaque, meaning that, although they deliver desired results, our
understanding of how the results are obtained and how patterns in data are detected by the underlying neural
network is very limited [13]. Often, little or no information on the physical system that is solved/simulated
can be gained by studying the neural network itself, which is a significant drawback of these techniques.
Furthermore, basic questions regarding the minimal amount of training data, or the optimal size of the
underlying neural network required to obtain good precision for a pre-defined problem remain
unanswered [6].

Signal-parameter estimation is an integral part of both fundamental and applied research, with precision,
accuracy and speed being crucial for the real-time observation and control of physical and chemical dynamic
processes. A multitude of research fields rely on determination of time constants and frequencies of decaying
signals, examples of which include: nuclear magnetic resonance (NMR) [14] where molecular structures are
analysed from precise determination of the frequency and decay time of the Larmor precession of nuclear
spins in a magnetic field; free-induction-decay (FID) optical magnetometry [15–19] where measurement
sensitivities depend on the precision of the measurement of the precession of magnetized spins about a
magnetic field; and cavity ring-down spectroscopy (CRDS) [20–24] that relies on the detection of variations
of the photon lifetime in optical cavities to identify trace gasses, measure absorption cross-sections or
observe chemical reactions in real time. Other cavity-enhanced methods, such as cavity ring-down
polarimetry (CRDP) [25–31] and ellipsometry (CRDE) [32–34], measure birefringence and/or dichorism of
an optical medium through the precise estimation of the signal-decay time and the polarization beat
oscillations superimposed on such decaying signals.

All the aforementioned methods require some form of data processing to determine their relevant signal
parameters. Optimizing sensitivity and minimizing computational costs is usually done by averaging
multiple, consecutive measurements, sacrificing temporal resolution. Therefore, it is imperative that one
considers the sampling and acquisition rates of an instrument and balances that against the computational
costs (calculation time) to analyse the acquired data, the time scales of relevant dynamics to be observed, and
the requirement to observe those dynamics in real time. In cavity-enhanced spectroscopy, CRDP/CRDE
techniques in particular, the decay times of interest are typically in the 10−7−10−5 s range, a few orders of
magnitude smaller than the typical decay times of NMR experiments (10−2−101 s) or FID optical
magnetometry techniques (10−3−101 s). As such, analysis methods that are sufficiently fast for the real-time
analysis of single measurements of NMR or FID magnetometry experiments do not have the capability to
offer real-time analysis in situations where the relevant time scales are much smaller than 1 ms. Different
time- and frequency-based computational methods for rapid parameter estimation have been demonstrated,
and evaluated, for cavity ring-down (CRD) spectroscopy methods [35–37]. Notably, Fourier-transform
implementations on FPGAs have demonstrated data analysis rates as high as 4.4 kHz [38]. Several works
discuss time- and frequency-domain analysis algorithms for damped sinusoidal signals [39, 40] and a
recently published comparative study includes three analysis methods of discretely sampled damped
sinusoidal signals in terms of their speed, and attainable accuracy and precision [41].

In this work we demonstrate a ML based approach to extract the relevant signal parameters from
experimentally relevant signals with well-defined functional form. More specifically, we use dense
autoencoder networks to encode, extract parameters from, and subsequently reconstruct two types of
discretely sampled, decaying signals: (a) exponentially decaying signals and (b) decaying oscillations. We
evaluate the autoencoder network on its precision and accuracy in parameter extraction and compare its
performance to the fundamental estimation limits of such signals given by the Cramér–Rao lower bound
(CRLB). We show that the dense autoencoder network is able to reach analysis rates of 75 kHz of 1000
sample signals with cost-effective computational facilities. This makes the ML method ideal for
implementations where computational capabilities come at a premium, such as fast, portable
cavity-enhanced sensing instruments.

2. Theory

2.1. Dense autoencoder neural networks
A neural network is an ordered group of neurons that, much like the neurons iDn brains, communicate by
signaling to each other. Each neuron has a number of incoming and outgoing connections from and to other
neurons. Each connection has a strength (weight) and can be stimulating or inhibiting the response of the
receiving neuron. To calculate the activity (value) of a neuron, one compares the sum of its weighted inputs
to a neuron specific reference (bias). The difference is passed through an activation function which produces
the output of the neuron [1, 2]. Initially, the weights and biases within a neural network start off randomly.
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Figure 1. Example of a dense neural network with L= 2 layers. The first layer, l= 0 is the input layer, l= 1 a hidden layer and l= 2
is the output layer. χx

y specifies neuron x in layer y. Each neuron contains a bias and layer specific activation function (not
illustrated). ωy,x,z denotes the weight (strength) between neuron x in layer y and neuron z in layer x− 1. For illustrative purposes,
some connections have been highlighted and are shown with their corresponding weight. The output of the neuron depends on
its inputs, weights and bias put through the activation function (equation (1)).

As the neural network is trained, these weights and biases are altered to optimize the performance of the
network with respect to the task it is asked to perform. The manner in which neurons are ordered and
connected influence the capabilities of the overall network and a variety of different network configurations
with different purposes have been demonstrated [42]. A dense neural network is a network where the
neurons are arranged in sequential layers and all the layers are fully connected. This means that every single
neuron in one layer is connected to all neurons in the next layer. There are no neural connections within a
layer or connections spanning multiple layers. An example of a dense neural network is shown in figure 1.
For such a neural network, one can calculate its output as:

for l : 0−→ L

χ⃗l+1 = Fl

(
ωl+1 · χ⃗l − b⃗l

)
, (1)

where L is the number of layers in the neural network (excluding the input layer), χ⃗l is the output of the
network at layer l, ωl is the weights matrix, and b⃗l is the bias vector for the corresponding neurons of layer l.
Finally, Fl is the activation function of the network layer that acts piece-wise on each neuron in layer l. The
input layer (l= 0) has no bias or activation function.

Autoencoders are symmetric, hourglass-shaped neural networks [43–47] (figure 2). This means that the
number of neurons in the middle layer of the network is small compared to the number of neurons in the
input and output layer of the neural network. The goal of the autoencoder network is to recreate its input
signal. In the first half, the autoencoder network learns to encode the input data into a lower dimensional
representation. In the second half, the autoencoder network learns to subsequently decode that lower
dimensional representation and reconstruct the original signal with minimal losses. The middle layer of the
network, in which the maximal compression of the signal takes place, is called the latent space. The latent
representation of the original signal can be extracted from the latent space. Autoencoder networks are
typically used in data compression [46] and de-noising [47].

The choice of dimensionality of the latent space is ‘problematic’ [44]. In order to achieve maximum data
compression, the number of neurons in the latent space of the autoencoder network should be as small as
possible. However one would also like to be able to reconstruct the data with minimal error. If the inherent
dimensionality of the data is not known a priori (as is typical) [44, 46, 47] but important, sparse, or
variational autoencoder networks with Bayesian regularization methods should be used [48]. Furthermore,
inference from the latent space representation is nontrivial because the way a network ‘learns’ to encode a
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Figure 2. Example of an autoencoder neural network with L layers. Signals are fed to the encoder, which compresses the data into
a limited number of parameters after which the decoder reconstructs the original data from the encoded parameters whilst
minimizing the losses. The layer with the smallest number of neurons is called the latent space. From the latent space the encoded,
or latent, representation of the input signal can be extracted.

signal in training is not necessarily unique. Another way of structuring the latent space of an autoencoder
network is by including the Kullback–Leibler (KL) divergence during training. However, KL divergence
inevitably introduces a trade-off between the ability of the autoencoder network to reconstruct the original
signal and a structured latent space [49].

In this work, we examine how an autoencoder network consisting solely of dense layers can be employed
for direct extraction of the parameters of a signal with well-defined functional form from its latent
signal-representation, as this becomes relevant in real-time signal analysis. To achieve such a task, we must
make sure that (a) the dimensionality of the latent space matches the dimensionality of the input signal, and
(b) that the autoencoder network encodes the input signal in a specific way where the latent representation of
the signal matches the independent parameters of the signal.

We are able to satisfy the first requirement because the number of parameters in our signal’s functional
form are known, which allows us to match the number of neurons in the latent space of the autoencoder
network to the number of parameters of the function (sections 2.2 and 3.2). Thereby we achieve efficient
encoding without redundant neurons in the latent space, or redundant values in the latent representation of
the signal. We are able to satisfy the second requirement by training the autoencoder network in a specific,
three stage training method (section 3.4).

2.2. Model signals
We use autoencoder networks to estimate the parameters of two types of experimentally relevant model
signals: (a) exponentially decaying signals and (b) decaying oscillations.

2.2.1. Exponentially decaying signals
We start by investigating purely exponentially decaying signals. Such signals are encountered in a wide range
of spectroscopic techniques, such as cavity ring down spectroscopy and cavity-enhanced sensing methods
[22, 23, 50] and time-resolved fluorescence spectroscopy [51, 52]. An exponentially decaying signal can be
characterized in terms of a model function as:

y(t) = A0 · e−t/τ + y0(t), (2)

4



Mach. Learn.: Sci. Technol. 2 (2021) 045024 J C Visschers et al

where A0 is the initial amplitude and τ is the decay constant of the signal, y0(t) is the signal offset, and t is the
independent (time) variable that is discreetly sampled. Here, for simplicity and without loss of generality, we
assume that A0 = 1 and ⟨y0(t)⟩= 0. Furthermore we restrict the investigation of noise contributions to the
global offset parameter, i.e. y0(t). We model the noise to be normally distributed, i.e. ⟨y0(t)⟩= 0,
⟨y20(t)⟩= σ2

y0 and define the signal-to-noise ratio as: SNR= A0/σ
2
y0 = σ−2

y0 . Under realistic experimental
conditions, signal-amplitude fluctuations can be incorporated into the SNR through A0. This way, the
dimensionality of the exponentially decaying signal is reduced to a single parameter that in most cases of
interest carries the valuable information: the decay constant τ .

2.2.2. Decaying oscillations
The second type of model signals we investigate are decaying oscillations, as these become relevant in a wide
range of experimental techniques, particularly within NMR [14], optical magnetometry [15–19] and CRDP
[25–31, 53] and CRDE [32–34, 54]. An exponentially decaying oscillation can be characterized in terms of a
model function as:

y(t) = A0 · e−t/τ · cos(2π · f · t+ϕ)+ y0(t), (3)

were t is the discretely sampled independent variable of the signal (time), A0 is the oscillation’s initial
amplitude, τ is the decay constant of the signal’s envelope, f is the frequency of the oscillation, and ϕ its
phase. Finally y0(t) is the global signal offset. Again, we assume the signals amplitude to be normalized
(A0 = 1) and no global signal offset (⟨y0(t)⟩= 0), and SNR is defined as SNR= σ−2

y0 identical to the
exponentially decaying signals. The experimentally relevant parameters τ , f and ϕ, are the free parameters we
extract from the latent representation. We recognize that, similar to the case of pure exponential decays, the
amplitude parameter A0 could potentially be an experimentally relevant parameter for inspection purposes,
and could be considered as a free parameter of the model signal.

2.2.3. Cramér–Rao lower bound
The fundamental limits for the statistical uncertainties of determining the decaying time-constant and
oscillation frequency of pure and oscillating decaying signals are described by the CRLB. For the case of a
decaying (oscillating) signal (equations (2) and (3)) the CRLB [16, 55] sets the lower limit on the variance of
both the decay constant estimator σ2

τ and the frequency estimator σ2
f . In general, the CRLB limit can be

defined for any parameter extracted by an unbiased estimator. Here however, we focus on the two most
important parameters for the experimental techniques of interest, e.g. [14–23, 25–34, 50–54].

The relation between the variance limit of the decay-time estimator and the lower limit of the frequency
estimator is given by: σ2

τ = 2πσ2
f . The CRLB for the frequency estimator σ2

f is given by [16, 55]:

σ2
f =

6

(2π)2 SNR2 fBW T3
m

ξ (τ/Tm) , (4)

where SNR is the signal-to-noise ratio of the decaying oscillating signal; f BW is the sampling-rate-limited
bandwidth of the measurement; Tm is the measurement time window and, ξ (τ/Tm) is a correction factor
that takes into account the signal decay, which is given by [16, 55]:

ξ(r) =
exp(2/r)− 1

3r3 cosh(2/r)− 3r(r2 + 2)
. (5)

The factor ξ (τ/Tm) serves as a compensation factor in equation (4) that penalizes measurement of the tails
of the exponential decay when the signal has effectively died out. The validity of equation (4) hinges on the
assumption that the period of the oscillation is shorter than the typical decay time (τ ) of the signal envelope,
and that a sufficient number of oscillations occur in the measurement time window. Moreover, equation (4)
dictates that any noise sources affecting the signal detection are contributing to the fundamental CRLB limit
through their effect on the SNR of signal.

In [30], it was demonstrated that the CRLB limit is the appropriate estimator of the fundamental
sensitivity of frequency-based measurements within the context of cavity-enhanced spectro-polarimetric
techniques [25–34, 53, 54].
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3. Methods

3.1. Simulated signals and data-sets
We use simulated signals generated using the model functions presented in equations (2) and (3) to train and
demonstrate the parameter-extraction capabilities of dense autoencoder networks. For our simulated
signals—both pure exponentially decaying and decaying oscillating ones—we assume a total signal duration
of 5µs and an effective bandwidth-limited sampling rate of 200MHz, resulting in discretely sampled signals
with a length of 1000 samples. Such signals are frequently encountered in CRDP experiments [30]. We
generate training data consisting out of multiple signals with varying experimentally relevant parameters.
From the training data the autoencoder network learns the relationship between the shape of the signal and
the values of the relevant parameters. For exponentially decaying signals (equation (2)), the only parameter
of interest is the decay constant τ , which we vary between simulated signals as follows:

τ = |norm(µτ = 1 µs, ζτ = 0.5 µs)| , (6)

where µτ and ζτ are the average and standard deviation of a normal distribution, from which we take the
absolute value as a negative decay constant would lead to exponentially increasing signal. For the decaying
oscillations (equation (3)) we vary the decay constant using the same process, but also vary the other two
experimentally relevant parameters, the frequency and phase of the oscillation, f and ϕ respectively, using:

f = norm
(
µf = 3 MHz, ζf = 0.1 MHz

)
(7)

ϕ= norm(µϕ = 0, ζϕ = 0.1) . (8)

For the exponentially decaying signals a training data set consists of 200 signals, while for the decaying
oscillations, a training data set consists of 1000 signals. These signals have a SNR= 220, to allow the
autoencoder network to learn the features of each model signal and the signals variance under changing
underlying parameters of interest without being hindered by noise artefacts.

We would like to mention here that, in real-world applications of this analysis method, the parameter
range on which the autoencoder network is trained is of crucial importance to the functionality of the
method. The training parameter range should correspond to the expected experimental parameter range.
Therefore, prior knowledge about the parameters and the expected range of these parameters is required for
the autoencoder to analyse experimental signals. However, in a real-world experiment, or commercially
available instrument, baseline signal parameters will be well defined and within well specified ranges making
the analysis method viable.

3.2. Dense autoencoder networks
The autoencoder networks that we use to reconstruct and extract the parameters from decaying signals, have
an input layer and output layer of 1000 neurons, equal to the number of samples in a signal. However the
number of neurons in the latent space of the autoencoder networks are different between autoencoder
networks that analyse exponentially decaying signals and decaying oscillations. In the case of the
exponentially decaying signals, we use a network with only a single neuron in the latent space, corresponding
with the single parameter of interest that we wish to extract from the signal, i.e. τ . In the case of the decaying
oscillations, we need three neurons in the latent space of the network in order to be able to extract the three
interesting parameters of that signal, i.e. τ, f,ϕ. Furthermore, the signal complexity of a decaying oscillation
with three parameters is higher than a exponentially decaying signal with only one parameter of interest. For
this reason, to analyse decaying oscillations we increase the number of neurons in the layers of the encoder
and decoder part of the autoencoder network (figure 2). The network we use to analyse the exponentially
decaying signal has five total layers with 1000–50–1–50–1000 neurons per layer respectively. For the decaying
oscillations, we use a network with seven layers and 1000–50–10–3–10–50–1000 neurons per layer
respectively. We choose to use a hyperbolic tangent as activation function for all relevant layers. This choice
allows the neural network to express values between−1 and 1, which matches the maximal amplitude of the
input and output signals. We create the aforementioned neural networks using the Tensorflow and Keras [56]
libraries in a homemade Python script.

3.3. Signal reconstruction and parameter extraction
Autoencoder networks are used to reconstruct the original input data. However, our focus here is to use
autoencoder networks for the rapid extraction of the signal parameters from exponentially decaying signals
and decaying oscillations from the latent space of the autoencoder network. To do this we map the signal
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Figure 3. Average MSE loss per neuron as a function of training epochs for two networks. One network is trained using the
three-stage training method outlined in section 3.4 (dots) while the second network is trained in a typical fashion for an
autoencoder network consisting of the first step only (dark-green line). The two networks have the same shape and size, are
trained for an equal number of epochs using an equal amount of training data. The black and red dots correspond to the losses of
the first network at training steps 1 and 2 respectively (see text). The losses at training step 3 are omitted from the figure because
they overlap with the losses of the first training step. The breaks in the losses of the encoder network training (red dots) when a
new data set is generated are attributed to the small number of neurons in the latent space of the autoencoder network and the
specifics of the small validation data set.

parameters of interest to a number between−1 and 1 that the autoencoder network can express in the latent
space:

xlat =
x−µx

3× ζx
, (9)

where xlat is the latent representation of the value of parameter x (τ , f, and ϕ). µx and ζx are the mean and
standard deviation of the parameter variation defined in equations (6)–(8). We use equation (9) to create a
desired latent representation of signal parameters during training, and to convert the latent representation
back into the signal parameter when using the autoencoder network to analyse signals. For a trained neural
network, a signal only needs to be passed through the encoding part of the network, up to the latent space, in
order to find its latent representation. To investigate the analysis speed of the neural networks, we only take
into account the time it takes to encode the original signal into the latent representation.

3.4. Training protocol
The autoencoder networks are trained following a three-stage training scheme, using a stochastic gradient
descent (SGD) algorithm [56] and use a mean squared error loss function given by

1

n

n∑
i=1

(yi − ŷi)
2
, (10)

where n are the total number of samples in a signal, y is the desired signal or representation and ŷ is the
predicted outcome by the autoencoder network. Even though the sizes of the autoencoder networks are
different given the two different model signals, the training method for the autoencoder networks is the same:

(a) The complete autoencoder network is trained to recreate simulated input signals for 100 epochs.
(b) The encoder part of the autoencoder network, up to the latent space (figure 2), is trained to generate the

desired latent-signal representation from simulated input signals.
(c) Finally, the decoder part of the autoencoder network is trained with the desired latent-signal representa-

tion as input and the desired signals as output for 100 epochs.

We repeat these steps ten times after which a new training data set is generated to avoid over-fitting a
single data set. In total, each network is trained on ten different data sets. By implementing three distinct
training steps we are able to train the neural network to not only recreate the original signal, but also to
encode the signal in a specific way that allows extraction of the signal parameters from the latent space.

Figure 3 compares the prediction error (loss) of two autoencoder networks during training. We measure
the loss of each neuron in the output layer and the latent space using the mean squared error (MSE) [56].
The smaller the loss of the autoencoder network, the better the network is in recreating the desired output.

7
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The first network (red and black dots) is trained using our three-stage training method. The second network
(dark-green line) is only trained on replicating the input data (first step). Both networks encode and
reconstruct exponentially decaying signals described by equation (2). We observe that both training methods
converge to similar losses per neuron at the end of training for the complete autoencoder networks (black
dots versus dark-green line), meaning that both networks, at the end of training, are able to reproduce the
input data with a similar level of precision and accuracy. However, in the autoencoder network that is trained
using our three-stage training method, we see a decrease in losses from the encoder part of the autoencoder
network (red dots), indicating that by using the three-stage training method we can achieve a desired latent
signal representation without sacrifice of the capability of the autoencoder network to reconstruct the
original signal.

4. Results

4.1. Exponentially decaying signals
Figure 4 shows the results for a trained autoencoder network reconstructing and extracting parameters from
exponentially decaying signals. The ability of the autoencoder network to extract the signal parameters from
the latent space is compared to the performance of an ordinary least squares algorithm [30]. In figure 4(a),
we show an example of a generated exponential decaying signal with SNR= 25 and a randomly selected time
constant (τ = 1.81 µs). We use a trained autoencoder network (section 3.4) to reconstruct this generated
signal. In addition, we use a least-squares algorithm to analyse the generated signal, from which we extract
the expected decay constant τ = 1.81(2)µs, with a precision in accord to the CRLB limit (see related
discussion in [41]). In figure 4(b), we show a histogram of 500 estimates of the decay constant extracted from
the latent space of the autoencoder network. By subtracting the least squares decay constant estimate (τest)
and fitting the histogram to a Gaussian distribution we show that there is no difference in accuracy between
the two analysis methods as the center of the distribution is not significant from zero. The width of the
distribution of the decay constant estimates coincides with the uncertainty of the least squares estimation
method indicating that also the precision of the two methods is equal. In figure 4(c), we demonstrate that the
trained autoencoder network is able to, accurately and without loss in precision, follow signal changes. In
particular, we simulate a spectral absorption feature having a characteristic dispersive (Lorentzian) profile. In
this case, the decay constant changes by 30% and both the autoencoder network and the least squares
algorithm are able to accurately detect such a change. This situation is representative of a spectroscopy
experiment investigating, for instance, absorption from gaseous species using CRDS [24, 57]. In figure 4(d),
we show that the precision of the neural network is able to match the precision of the least squares algorithm
and that both are limited by the CRLB over several orders of magnitude in SNR. It is crucial to emphasize
that the network is able to accurately and precisely extract the correct signal parameters over a wide range of
SNR values, despite the fact that we do not vary the SNR of the input training data during the training of the
network.

4.2. Decaying oscillations
In figure 5, we present the results of a trained autoencoder network reconstructing and extracting parameters
from decaying oscillations. In figure 5(a), we show an example of a decaying oscillating signal with
SNR= 25, τ = 1.28 µs, ϕ=−0.243, and f = 2.972MHz. We fit the signal to equation (3) using a least
squares algorithm and use a trained autoencoder (section 3.4) to reconstruct the signal. Figure 5(b) shows
the histograms of 500 parameter estimates of τ , ϕ and f, extracted from the latent space of the autoencoder
network. We extract the latent parameters τ lat,ϕlat, flat from the latent space of the autoencoder network and
use equation (9) to reconstruct the estimate of the signal parameters found by the autoencoder τ enc,ϕenc, fenc.
Following the same procedure described for the case of pure exponentially decaying signals, for each
parameter we subtract the parameter’s estimated value obtained through the least squares method and fit the
histograms to a Gaussian distribution. Each distribution has a center that is not significant from zero and a
width equal to the uncertainty of the fit parameters found by the least squares fit indicating that there is no
difference in accuracy or precision between the two analysis methods. In figure 5(c), we demonstrate that the
trained autoencoder network is able to, accurately and without loss in precision, follow signal changes. In
particular, in figure 5(c), we simulate a spectral feature having a characteristic change in both its absorption
and dispersion (e.g. Cotton effect). This results in signals whose frequency and decay constant change in a
correlated way. Finally, in figure 5(d), we show that the precision of the parameter estimates from the latent
space of the trained autoencoder network follows the precision of the least squares method over five orders of
magnitude in SNR. Moreover, the precision of the parameters extracted from the latent space of the
autoencoder network approaches the fundamental estimation limit as given by the CRLB.
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Figure 4. Parameter extraction from an exponentially decaying signal using an autoencoder network. (a) Example of an
exponentially decaying signal with 1000 samples and SNR= 25 (black line) reconstructed by a trained autoencoder network (blue
line) and analysed using a least squares fitting method (red line). The residuals for each method are shown in the bottom insets of
the figure with their corresponding colour. The decay constant estimated by the least squares method is τest = 1.81(2)µs.
(b) Histogram of 500 decay-constant estimates extracted from the latent space of the trained autoencoder network. Analysed
signals have decay constants and SNR equal to the signal shown in (a). The value of the decay constant estimated by the least
squares method, τ est, is subtracted from the decay constant extracted from the latent space of the autoencoder network, τ enc. The
full width at half maximum (FWHM) of the fitted Gaussian distribution coincides with the uncertainty of the least squares
method while the center of the distribution is not significantly different from 0. (c) Accurate and precise signal parameter
extraction using an autoencoder network is possible in the case of (relative) changes in the decay constant through a simulated
absorption feature (dotted line) as one would expect in, for instance, cavity ring-down absorption spectroscopy when a laser is
detuned from the resonance frequency of the absorption feature. The feature is followed by both the trained autoencoder network
(blue dots) and a least squares algorithm (red dots). The error bars represent the standard deviation of 100 parameter estimations
from the latent space of the trained autoencoder network and the least squares algorithm respectively. (d) Precision of a least
squares algorithm and a trained autoencoder network on estimating the decay constant from the latent space over multiple orders
of magnitude in SNR. The CRLB giving the fundamental estimation limit on the decay constant is also shown (dotted line) and
the area below the fundamental estimation limit is greyed out.

4.3. Complexity vs calculation time
Analysis speed is crucial for the real-time investigation and control of fast processes. Faster methods of
analysis allow for large data stream to be analysed quicker, driving down computational costs.

For our particular cases of interest, we recently showed [41] that non-iterative FFT methods require
∼300 µs of calculation time whereas a least-squares fitting algorithms requires>1 ms of calculation time
under identical signal conditions as we present in this work. Similarly, other works have shown that
FPGA-based systems running FFT algorithms are able to determine the decay constant of exponentially
decaying signals with analysis rates of 4.4 kHz [38]. Here, we show that trained autoencoder networks are
able to analyse both exponentially decaying signals and decaying oscillations significantly faster than any
previously reported method. We compare the calculation speed of the encoder part of trained autoencoder
networks of different sizes on different systems: a central processing unit (CPU) and a graphics-processing
unit (GPU) based system. The CPU-based system is based around an Intel(R) Xeon(R) W-2123, 3.6GHz
processing unit with access to 16GB of random-access memory (RAM) with a frequency of 1330 MHz, while
the GPU system is based on a NVIDIA Quadro p5000 graphics board.

In figure 6, we present the calculation time required by the encoder part of an autoencoder network to
analyse a single decaying oscillation signal for varying sizes of networks. For our estimation of the overall
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Figure 5. Parameter extraction from decaying oscillating signals using an autoencoder network. (a) Example of a decaying
oscillation (black line) with SNR= 25 reconstructed by a trained autoencoder network (blue line) and analysed using a least
squares fit (red line). The residuals for each method are shown in the bottom insets with their corresponding colour. The signal
parameters found by the least squares fit are shown in the figure with their corresponding uncertainties. (b) Histograms of 500
signal parameter sets (top: τ , middle: ϕ and bottom: (f) extracted from the latent space of the autoencoder network. The analysed
signals have the same parameters and SNR as the example signal shown in (a). For each of the signals parameters, we subtract the
parameter estimate of the least squares fit Xest from the parameter estimate extracted latent space of the autoencoder network
Xenc. The width of the fitted Gaussian distributions coincide with the uncertainty of the least squares method for each individual
parameter of the signal and the centers of the distributions are not significantly different form 0. (c) Accurate and precise signal
parameter extraction using an autoencoder network is possible in the case of (relative) changes in the decay constant through a
simulated disperive absorption feature, or cotton effect, (dotted line) as one would expect in a cavity enhanced polarimetry
experiment when a laser is detuned from the resonance frequency of the absorption feature. The feature is followed by both the
trained autoencoder network (blue dots) and the least squares algorithm (red dots).The error bars represent the standard
deviation of 100 parameter estimations from the latent space of the trained autoencoder network and the least squares algorithm
respectively. (d) Precision of the trained autoencoder network (blue dots) and the least squares algorithm (red dots) in estimating
both the frequency (f) and decay constant (τ ) over several orders of magnitude in SNR. The fundamental estimation limits of
these parameters, given by the CRLB is also shown (dotted line) and the area below the fundamental estimation limit is greyed out.

CPU calculation time (figure 6) we count the matrix multiplications, the adding/subtracting of the network
biases and the application of the activation function. Other prepossessing operations for the CPU-based
system, such as data collection, take between 3.6 and 4.9µs per signal and are not included. For our
estimation of the overall GPU calculation time we include the aforementioned operations (such as matrix
multiplications, the adding/subtracting of the network biases, and the application of the activation function)
and the transfer time of the results of the encoder onto the RAM of the computer. We do not include,
however, the time it takes for the original signal to be transferred from the RAM onto the GPU memory
(∼5 µs) or any other pre/post-processing operations conducted by the CPU of the system (∼6 µs). For the
GPU-based system there is a clear difference in calculation time between neural networks with different
numbers of layers in the encoder network, something we do not observe for the same neural networks on the
CPU-based system. The results we present in figures 4 and 5 are obtained with autoencoder networks that
require the calculation of∼100 000 floating point operations (FLOPS) to reach the latent space
representation of the signal. Using the trained autoencoder networks we are able to achieve analysis rates
upwards of 75 kHz using the GPU-based system. This includes the data transfer time, the pre/post processing
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Figure 6. Calculation time required by the encoder part of the autoencoder network to extract the latent parameters of a single
damped oscillating signal as a function of floating point operations (FLOPS) required to calculate the network using a CPU (solid
dots) and a GPU (open dots) based system. The analysed signals consist of 1000 samples. The networks are varied in size, and
thereby the required number of FLOPS needed to calculate latent signal representation. We vary the size of the network by varying
the number of layers in the encoder network and the number of neurons within each layer. The lengths of these layers range from
10 to 500 neurons, where the smallest network investigated has a single layer with 10 neurons, and the largest network has three
layers with 500, 200 and 100 neurons between the input layer and the latent space respectively. The dashed and dotted horizontal
lines represent the calculation times required to analyse the same signal using a least squares algorithm and non-iterative Fast
Fourier transform method, respectively [41].

operations conducted by the CPU, and the actual calculation time required of the autoencoder network itself.
In future work, optimization of the data transfer rate between the data-acquisition system and data-analysis
system and minimization of preprocessing operations, down to a combined∼3 µs, the method of analysis we
propose in this paper could be shown to be capable of reaching analysis rates of>200 kHz, in which we
include the<2 µs calculation time required by the GPU system.

5. Outlook and conclusion

In summary, we have shown that we can accurately and precisely extract the signal parameters of decaying
signals using simple autoencoder networks. We demonstrate that our approach is orders of magnitude faster
than conventional algorithmic methods (e.g. least-squares or FFT), regardless of CPU or GPU
implementation of the neural network. We demonstrate analysis rates upwards of 75 kHz for signals with
1000 samples, and illustrate that analysis rates of>200 kHz are feasible with further optimization of data
transfer speed between a data-acquisition and data-analysis device, which would allow for real time signal
analysis rates of>200 kHz using state-of-the-art GSa/s sampling rates. Such capabilities can enable the
real-time signal analysis of, for instance, CRDP signals at>200kHz rates using state-of-the-art acquisition
modules that have GSa/s sampling rates.

Concluding, we wish to note that the methodology of signal parameter extraction directly from the latent
space of dense autoencoder networks could be applicable to other signal types that currently use fitting
models for parameter extraction. Presently, neural networks are used for the classification of spectroscopic
data [9–11], however, our approach can be directly implemented to analyse spectroscopic data for
quantitative rather than qualitative results. Signals of higher complexity, such as signals with additional decay
constants or frequency components, will require larger networks and larger training data sets for the
network. If the number of extra parameters is known, a similar technique to what we demonstrate can be
employed. However, if the number of additional parameters is unknown, a regularization method should be
used to adequately choose the number of latent space parameters of the network to analyse the signal.
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Appendix. Influence of realistic noise sources on autoencoder reconstructions and
parameter estimations

Studying additional noise sources and their influence on the autoencoder networks signal reconstructions
and parameter estimations can be highly informative, considering that real-world experiments encounter
real-world noise. We consider frequency and amplitude noise as two additional noise sources and, in this
section, study how these noise sources affect the signal reconstruction and parameter estimation differently
compared to the offset noise discussed in the main text of this work. For this investigation we limit ourselves
to decaying oscillations only.

Decaying oscillations with frequency noise are given by:

y(t) = A0 · e−t/τ · cos(2π · f(t) · t+ϕ)+ y0(t), (11)

where the frequency is given by

f(t) = f0 + norm(µ,σ) (12)

and norm(µ,σ) is a normally distributed random process with mean µ and standard deviation σ. We
compare autoencoder reconstructions and latent space frequency estimates of decaying oscillations under
three distinct cases of frequency noise where:

(a) µ= 0 kHz; σ= 0 kHz,
(b) µ= 0 kHz; σ= 30 kHz,
(c) µ= 30 kHz; σ= 30 kHz.

The first case gives a baseline estimate without frequency noise, the second case adds frequency noise to
the signals, the third and final case we investigate has both frequency noise and a frequency offset of equal
magnitude. In each case, we investigate the additional frequency noise (or lack thereof) on a baseline offset
noise corresponding to a signal-to-noise ratio of 25, an equivalent noise level shown in figure 5.

Figures 7(a)–(c) show the autoencoder reconstructions and least-squares fits for the three cases of
frequency noise. It can clearly be observed from the residuals of the autoencoder network reconstructions
that, in the presence of frequency noise, the autoencoder is unable to fully reconstruct the signal (figures 7(b)
and (c)). Figure 7(d) shows histograms of 500 frequency estimates of the cases of frequency noise and
area-equalized Gaussian fits of said histograms. The estimates and uncertainties from the least-squares fits
are also shown. The autoencoder network frequency estimate distributions in the cases with additional
frequency noise are∼20% wider compared to the case without frequency noise. Both cases where frequency
noise is present pick up a bias compared to the real frequency of the decaying oscillating signal. Remarkably,
the frequency estimates obtained form the least-squares fitting technique also pick up a slight, but significant
bias in the presence of frequency noise. The width of the frequency estimates from the least-squares method
also widens by∼8%. The autoencoder network is able to differentiate between cases 2 and 3 where a
frequency offset of the same magnitude as the frequency noise is applied.

Considering amplitude noise in decaying oscillating signals, we take the a similar and express signals
containing amplitude noise as:

y(t) = A(t) · e−t/τ · cos(2π · f · t+ϕ)+ y0(t), (13)

where the amplitude of the signal is given by

A(t) = A0 + norm(µ,σ) . (14)
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Figure 7. Autoencoder reconstructions and least squares fits of decaying oscillating signals with baseline SNR = 25 for the cases
of (a) no additional frequency noise, (b) additional frequency noise with σ= 30 kHz, and (c) additional frequency noise and
frequency offset of µ= 30 kHz, σ= 30 kHz. The residuals for the autoencoder reconstruction and the least-square fit are shown
in the bottom insets of each figure with their corresponding colour. (d) Histograms and area-equalized Gaussian fits of 500
frequency estimates of the three cases of frequency noise (black= no frequency noise, red= additional frequency noise, blue=
additional frequency noise and frequency offset). The least-squares estimates are shown along with their respective uncertainty
above the histograms.

Again we study three cases where:

(a) µ= 0 ; σ= 0,
(b) µ= 0 ; σ= 0.03,
(c) µ= 0.03 ; σ= 0.03.

Figures 8(a)–(c) show the autoencoder reconstructions and least square fits for the three cases of
amplitude noise. Interestingly, cases 2 and 3 show progressively more remaining signal in the residuals of the
autoencoder reconstructions. In contrast, the least-squares method is able to reconstruct the signal effectively
in all cases. Figure 8(d) shows area-equalized Gaussian fits from 500 parameter estimations of the respective
amplitude noise cases and the estimates and uncertainties corresponding to the least-squares method. The
least-squares method has no problem handling the amplitude noise cases and none of the parameter
estimates differ significantly between the different cases of amplitude noise. It can be seen from figure 8(d)
that the autoencoder network attempts to accommodate the amplitude noise with an increased decay time
(top) and slightly retarded phase (middle). The frequency-estimate distributions for the cases with
amplitude noise are slightly narrower (∼8%) compared to the frequency-estimate distribution of the case
without amplitude noise (bottom).

Overall, the addition of extra, realistic noise sources such as frequency and amplitude noise increases the
estimation uncertainty of, and can introduce biases in, the parameter estimates of the autoencoder networks.
However, the parameter estimates of the autoencoder networks do not completely deteriorate from the
addition of these noise sources. The results shown in figures 4 and 5 of the main text were chosen as the most
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Figure 8. Autoencoder reconstructions and least squares fits of decaying oscillating signals with baseline SNR = 25 for the cases
of (a) no additional amplitude noise, (b) additional amplitude noise with σ= 0.03, and (c) additional amplitude noise and
amplitude offset where µ= 0.03 and σ= 0.03. The residuals for the autoencoder reconstructions are given in the bottom insets of
each figure with their corresponding colour. (d) Area-equalized Gaussian fits of histograms from 500 parameter estimates for the
three noise cases shown in (a), (b), and (c). For illustrative purposes only one original histogram is shown in each subplot. The
least-squares estimates and corresponding uncertainties are given in each subplot above the distributions.

general representation of a wide range of possible experiments ranging in SNR over five orders of magnitude
(for offset noise). We would also like to note that the autoencoder network used to reconstruct and predict
the parameters from signals affected by frequency- and amplitude noise are the same networks used to
acquire the results presented in figure 5 in the main body of our work and have not been re-trained to
accommodate these types of noise specifically.
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