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Abstract
We introduce a machine learning model, the q-CNN model, sharing key features with
convolutional neural networks and admitting a tensor network description. As examples, we apply
q-CNN to the MNIST and Fashion MNIST classification tasks. We explain how the network
associates a quantum state to each classification label, and study the entanglement structure of
these network states. In both our experiments on the MNIST and Fashion-MNIST datasets, we
observe a distinct increase in both the left/right as well as the up/down bipartition entanglement
entropy (EE) during training as the network learns the fine features of the data. More generally, we
observe a universal negative correlation between the value of the EE and the value of the cost
function, suggesting that the network needs to learn the entanglement structure in order the
perform the task accurately. This supports the possibility of exploiting the entanglement structure
as a guide to design the machine learning algorithm suitable for given tasks.

1. Introduction

Convolutional neural networks (CNNs) have seen remarkable successes in various applications. At the same
time there are tasks with similar descriptions that can nevertheless not be solved with a CNN architecture3.
Moreover, it is not always transparent what choices of hyperparameters work the best, and why. More
generally, we do not always have a precise explanation of why certain choices of machine learning
architectures and hyperparameters work and do not work for a given task. This lack of a precise
understanding is related to the curse of dimensionality which prevents an explicit analysis. That said, the data
of a given problem typically lie in a high co-dimensional subspace. For instance, a typical point in the
configuration space of all possible N-pixel grayscale pictures resembles a ‘white noise’ image, and looks
nothing like a picture encountered in the relevant data set.

This is very reminiscent of the situation in quantum many-body systems. The high dimensionality of the
Hilbert space of quantum states makes it hard to find the desired state (e.g. ground state of the given
Hamiltonian) explicitly. Tensor network [2, 3] is one of the most popular tools utilised in many-body
quantum physics to overcome this problem. Abstractly speaking, they provide a way to approximate
high-order tensors in terms of lower-order tensors, and by doing so greatly reduce the parameters needed to
describe the relevant quantum states, circumventing the curse of dimensionality. This is possible because the
physically relevant states lie in a tiny ‘corner of the Hilbert space’. One can quantify this using the
entanglement entropy (EE) of a quantum state with respect to a bipartition of the system, which measures the
degree to which the quantum state is entangled between two subsystems. While a typical element of the
Hilbert space has an EE which scales like the volume of the sub-region, the physically relevant states tend to
have entanglement entropies that scale like the boundary area (possibly with logarithmic corrections) of the
sub-region. At the same time, the entanglement structure of a quantum state is precisely what constrains how
effectively it could be approximated by a given tensor network architecture. See [4, 5] for a review.

3 See, for instance, [1] for an example in physics.
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The analogy between quantum many-body systems and machine learning prompts the following
questions. Could we have a similar theoretical understanding in the context of machine learning
architectures on how effective they are for a given task? Could we also understand the subspace of relevant
data with similar tools as those used in the study of quantum many-body systems? Moreover, one might also
hope that the analogy between quantum many-body systems and machine learning architectures can help
the developments of natural and effective quantum machine learning architectures [6–8].

Inspired by these questions, there have been increasing efforts to build a bridge between the two fields of
machine learning and quantum many-body systems, and in particular tensor networks [9–25]. In this work,
we continue to strengthen this bridge, focusing on CNNs. Specifically, we build a CNN-like architecture,
which we call q-CNN, which admits a description as a tensor network. In particular, our architecture has the
same weight sharing property as the usual CNN, and as a result the number of parameters grows only
logarithmically with the system size. Subsequently, we apply q-CNN to the classification tasks on the MNIST
and Fashion-MNIST datasets, obtaining maximum test accuracy 97% and 89% respectively, comparable
to [26].

With the confidence that our architecture has satisfactory performance, we then go ahead and explore its
quantum mechanical properties. As mentioned before, a crucial probe of the qualitative features of a
quantum states is its entanglement entropies. We compute the entanglement entropies of the network
quantum states, with respect to bipartitions of the configuration space corresponding to the left/right and
up/down partitions of an image. In the current context, the EE of the network given a specific bipartition of
the image measures the degree to which the network captures the correlation between the two parts of the
image. For instance, a vanishing EE implies that the network assigns a probability for the image to be in a
certain category that can be expressed as the product of two probabilities corresponding to each part of the
bipartition, which is a clearly an undesirable outcome.

Quantum EE is well-known to be an important quantity quantifying the important entanglement
attributes of a quantum system. As a result, computationally it has been playing a crucial role in the design of
tensor networks capable of performing computations pertaining to given quantum systems; too intricate an
entanglement structure could pose a fundamental hurdle to computability via given tensor networks. See for
instance [27] for a recent review. Similarly, from the analogy between quantum many-body systems and
machine learning, it is reasonable to suspect that the concept of entanglement can also play the similar role as
a guiding principle for choosing the right architectures and hyperparameters capable of solving a given
problem. As a first step, in this work we established that entanglement is indeed a relevant structure the
network needs to learn before it can start performing the tasks we designated.

In both our experiments on the MNIST and Fashion-MNIST datasets, we initialize the network in a
random way which renders a quantum state with no particular entanglement structure. Subsequently, we
observe a distinct increase in EE during training as the network learns the fine features of the data. More
generally, we observe a negative correlation between the value of the EE and the value of the cost function,
across different initialisations and choices of hyperparameters of the network. This constitutes convincing
evidence that one of the structures of the data that the network needs to ‘learn’ is the entanglement structure.
It can also be read out that the entanglement needed for the (Fashion-) MNIST classification tasks is low,
which could be viewed as a ‘justification’ why a simple CNN is capable of performing these tasks.

1.1. Related work
The q-CNN architecture discussed in this work is based on the theoretical architecture, named deep
convolutional arithmetic circuit, introduced in [23, 24]. The product pooling proposed in [23, 24] presents a
challenge in training the network described above, since it can easily lead to numerical instabilities such as
underflow or overflow. We would like to render the network trainable in practice, and do so without spoiling
the analogy to quantum many-body systems. In [28] this architecture was trained using simnets [29],
circumventing the numerical instability of product pooling by performing the calculations in logarithmic
space. In q-CNN, we instead introduce additional batch normalisation layers which can easily be
incorporated into the tensor description of the network, compatible with the quantum analogy.

As opposed to other works aiming to study and/or practice machine learning in ways inspired by
quantum many-body physics [26, 30, 31], we train the network as a usual neural network with Pytorch
instead of optimization schemes commonly used for tensor networks, such as DMRG. Also note that the
number of parameters of our network grows merely logarithmically with the size of the image, as opposed to
linearly as in the aforementioned approaches, since we retain the weight sharing feature of the usual CNN in
our architecture. In [14], the EE of the final trained network was computed for a very different architecture
directly related to tensor networks, but not its evolution during training and the correlation between
entanglement and accuracy. In [32] and [24], the possibility was mentioned that the requirement of being
capable to accommodate the entanglement could be used to guide the design of the network. We note that
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the values of the EE in our experiments on the MNIST and F-MNIST datasets is of the order of log2. As a
result, the entanglement is unlikely to be a bottleneck of the network performance for such tasks.

2. The q-CNN architecture

In this section we describe the architecture of q-CNN, as summarised in figure 1.
Consider a grayscale image with N pixels, corresponding to a point in the configuration space

x= (x1, . . . ,xN) ∈ [0,1]⊗N. For simplicity we have flattened the 2d image into a chain. We will take N= 2L

with integral L, using padding if necessary. The first layer of the q-CNN is a (non-linear) representation
layer:

Rep : [0,1]⊗N → (Rd0)⊗N

(x1, . . . ,xN) 7→ (ζ
(0)
1 ,ζ

(0)
2 , . . . ,ζ

(0)
N ).

(1)

Explicitly, we write ζ(0)p,i to be the ith component of the d0-dimensional vector ζ(0)
p , for p ∈ {1, . . . ,N}. For

instance, ζ(0)p,i = fi(xp) for i ∈ {1,2, . . . ,2n} in (19).
Subsequently, we will have L iterations of feature learning. Each iteration consists of three operations:

batch normalisation, convolution, and pooling. In what follows we will discuss them individually.
Batch normalisation:
In q-CNN, we employ a somewhat unusual product pooling to correlate information captured in

different spacial locations of the image. This product operation is prone to numerical instability such as
overflow and underflow. To remedy this, we use batch normalisation to standardise the input features of each
layer such that they have a specific (learnable) mean µ(ℓ) and variance σ(ℓ) over the spacial and batch

dimensions. In other words, in the ℓth iteration and for a given batch, let µ(ℓ)
b and σ

(ℓ)
b be the mean and

variance of the input ζ(ℓ) over the spatial (denoted by p above) dimensions and over the data points in the
batch b. Then the batch normalisation layer amounts to the following affine transformation:

BN : (Rdℓ)⊗2L−ℓ

→ (Rdℓ)⊗2L−ℓ

(ζ
(ℓ)
1 ,ζ

(ℓ)
2 , . . . ,ζ

(ℓ)

2L−ℓ) 7→ (ζ ′(ℓ)
1 ,ζ ′(ℓ)

2 , . . . ,ζ ′(ℓ)
2L−ℓ),

(2)

with ζ ′(ℓ)
p = w(ℓ) ζ

(ℓ)
p + z(ℓ), or

ζ ′(ℓ)
p,i = w(ℓ)

i ζ
(ℓ)
p,i + z(ℓ)i (3)

in components. In the above, we have that w(ℓ) = diag(w(ℓ)
1 , . . . ,w(ℓ)

dℓ
) is a diagonal matrix and z(ℓ) is a

vector, with entries

w(ℓ)
i :=

σ
(ℓ)
b,i√

σ2
b,i + ϵ

, z(ℓ)i := µ
(l)
i −

µb,iσ
(ℓ)
i√

σ2
b,i + ϵ

(4)

where ε is a small regularizing constant.
Convolution:
We consider a convolution of window size 1× 1. Note that this is nevertheless non-trivial since we have

dℓ > 1 channels. As a result the convolution mixes information carried in different channels though not in
different spacial locations. Writing the weight tensor in the ℓth layer as a matrix a(ℓ) of size dℓ+1 × dℓ, we
have

Conv : (Rdℓ)⊗2L−ℓ

→ (Rdℓ+1)⊗2L−ℓ

(ζ ′(ℓ)
1 ,ζ ′(ℓ)

2 , . . . ,ζ ′(ℓ)
2L−ℓ) 7→ (ξ

(ℓ)
1 ,ξ

(ℓ)
2 , . . . ,ξ

(ℓ)

2L−ℓ),
(5)

with ξ
(ℓ)
p = a(ℓ) ζ ′(ℓ)

p , or

ξ
(ℓ)
p,j =

∑
i

a(ℓ)ji ζ ′(ℓ)
p,i (6)

in components. Note that the tensor a(ℓ) does not depend on the spacial location p, a feature often referred to
as weight sharing in the context of the usual CNN architecture.
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Figure 1. The neural network architecture used in this paper (left), and its tensorial description (right). The triangles represent
the delta tensor implementing the same-channel product pooling (8). The circles represent the matrix multiplication as in (6).

Product pooling:
Following each such convolution there is a product pooling operation which perform the same-channel

product of the corresponding (one-dimensional) features in non-overlapping spacial windows of size 2, thus
reducing the spacial size of the feature map by a factor of 2. In other words, we have

Pool : (Rdℓ+1)⊗2L−ℓ

→ (Rdℓ+1)⊗2L−ℓ−1

(ξ
(ℓ)
1 ,ξ

(ℓ)
2 , . . . ,ξ

(ℓ)

2L−ℓ) 7→ (ζ
(ℓ+1)
1 ,ζ

(ℓ+1)
2 , . . . ,ζ

(ℓ+1)
2L−ℓ−1),

(7)

where

ζ
(ℓ+1)
p,i = ξ

(ℓ)
2p−1,iξ

(ℓ)
2p,i =

∑
j,k

δi,j,kξ
(ℓ)
2p−1,jξ

(ℓ)
2p,k. (8)

Classification:
The last pooling layer is followed by a batch normalisation operation and a dense linear layer (trivially a

convolution on a 1× 1 feature map), which maps the remaining features to the classification space of |C|
labels,

Cl: RdL → R|C|

ζ ′(L)
1 7→α,

(9)

with α= a(L) ζ ′(L)
1 , or

αy =
∑
i

a(L)yi ζ ′(L)
1,i (10)

in components.
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2.1. Tensor description
As mentioned before, without batch normalisation, the architecture consisting of the specific form of
convolutional and product pooling layers described above is the convolutional arithmetic circuit that the
authors proposed in [23], and further studied in [24, 33]. It was also pointed out that such an architecture
implements a (hierarchical) Tucker decomposition of the network tensors. To have a trainable network we
additionally apply batch normalisation. Naively, this destroys the description of the network as a tensor
operation, since batch normalisation (3) is an affine instead of a linear transformation. However, this can be
easily remedied by adding an additional dimension, corresponding to the ‘constant term’, in all layers.
Concretely, we can equivalently describe the affine transformation (2) as the following linear
transformation:

BN : (Rdℓ+1)⊗2L−ℓ

→ (Rdℓ+1)⊗2L−ℓ

(ζ̃
(ℓ)

1 , ζ̃
(ℓ)

2 , . . . , ζ̃
(ℓ)

2L−ℓ) 7→ (ζ̃ ′(ℓ)
1 , ζ̃ ′(ℓ)

2 , . . . , ζ̃ ′(ℓ)
2L−ℓ),

(11)

where

ζ̃
(ℓ)

p =

(
1

ζ
(ℓ)
p

)
, ζ̃ ′(ℓ)

p =

(
1

ζ ′(ℓ)
p

)
, (12)

and ζ̃ ′(ℓ)
p = w̃(ℓ) ζ̃

(ℓ)

p , with

w̃(ℓ) =

(
1 01×dℓ

z w(ℓ)

)
. (13)

At the same time, the convolution and product pooling layers can also be described in terms of the

(d+ 1)-dimensional vectors ζ̃
(ℓ)

p , ζ̃ ′(ℓ)
p and ξ̃

(ℓ)

p in a straightforward way. For instance, the batch
normalisation and the convolutional layers can be described as a combined tensorial operation:

BN+Conv : (Rdℓ+1)⊗2L−ℓ

→ (Rdℓ+1+1)⊗2L−ℓ

(ζ̃
(ℓ)

1 , ζ̃
(ℓ)

2 , . . . , ζ̃
(ℓ)

2L−ℓ) 7→ (ξ̃
(ℓ)

1 , ξ̃
(ℓ)

2 , . . . ,ξ
(ℓ)

2L−ℓ)
(14)

with ξ̃
(ℓ)

p = ã(ℓ) ζ̃ ′(ℓ)
p , where

ã(ℓ) =

(
1 01×dℓ

a(ℓ)z a(ℓ)w(ℓ)

)
(15)

for ℓ= 0,1, . . . ,L− 1. In the final classification layer, we simply have

ã(L) =
(
a(ℓ)z a(ℓ)w(ℓ)

)
(16)

since we do not need the additional constant channel in the final output.
As a result, the q-CNN we defined above can also be described in terms of tensor networks, as we will

further describe in the following section.

3. Quantum properties

In this section we discuss the description the data and the q-CNN network in the language of quantum
many-body systems, which then enables the definition and calculation of the EE of the network states.

3.1. A quantum description
To describe the neural network introduced in section 2, let us first describe our quantum Hilbert space in
terms of a space of L2-integrable complex functions4. Explicitly, consider

L2(S1,C) := {f : [0,1]→ C | f(0) = f(1),

ˆ 1

0
dxf(x)f(x) exists}. (17)

4 In this current work we will only use real functions in practice, though the generalisation allowing for complex functions is straightfor-
ward, at least in theory.
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As is well-known, this space is equipped with a natural norm

〈f,g〉 :=
ˆ 1

0
dxf(x)g(x), (18)

and an orthonormal basis is given by the Fourier basis5

f0(x) = 1, f2k−1(x) =
√
2cos(2πkx), f2k(x) =

√
2sin(2πkx) (19)

for k ∈ N. To obtain a finite-dimensional Hilbert space, we restrict to a subspace by truncating the modes
with frequency larger than a given n ∈ N:

L2n(S
1) := {f ∈ L2(S1,C)|〈f, fk〉= 0 ∀ k> 2n}. (20)

We will identify this space with the our local Hilbert space

Hloc
∼= L2n(S

1)∼= C2n+1 (21)

describing the state of the local pixel (or spin in the physics analogy). Explicitly, corresponding to the
orthonormal basis (19) for L2n(S

1), we introduce an orthonormal basis |f0〉, . . . , |f2n〉 forHloc, and it follows
from the orthonormality that

2n∑
i=0

|fi〉〈fi|= 1Hloc .

We also introduce 〈x|∈ H∗
loc to be giving the evaluation map:

〈x|f〉= ev( f,x) = f(x). (22)

In other words, we can think of |x〉 as the position eigenstates, and f (x) can be thought of as the
corresponding wavefunction associated with the state |f〉. Explicitly, one has

〈x|=
2k∑
i=0

fi(x)〈fi|, (23)

and

ˆ 1

0
dx |x〉〈x|=

2n∑
i=0

|fi〉〈fi|= 1Hloc . (24)

Note also that

〈x|x ′〉= Dn(x− x ′) , Dn(z) = 1+ 2
n∑

k=1

cos(2πkz), (25)

is the so-called Dirichlet kernel on L2n(S
1), and has the Dirac delta function δ(x) as the limit when n→∞.

Now, consider a system with N pixels (or lattice sites in the physics analogy), and we have

H=H⊗N
loc

∼= L2n(T
N)∼= (L2n(S

1))⊗N. (26)

We will write the coordinates x= (x1, . . . ,xN) for the N-torus TN = [0,1)⊗N, and introduce the following
natural (orthonormal) basis forH,

|fi1...iN〉=
N⊗

p=1

|fip〉p, ip ∈ {0,1, . . . ,2n}, (27)

5 Apart from the Fourier basis, other bases may be used as well. Concretely, we have implemented network with the Legendre basis for
L2 ([−1,1]), with which we obtain similar results in terms of accuracies.
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corresponding to the basis |fi〉p for the local Hilbert space of pth pixel.
Identifying a greyscale image with N pixels with a point in [0,1]⊗N, the ‘position eigenstate’ |x〉

corresponds in our case to a specific image. Note that, by working with the space (26), we restrict ourselves to
a periodic representation that is invariant under the action of swapping a zero with an one6. Just as in the
single pixel/particle case, its expansion in the orthonormal basis (27) reads

|x〉=
∑

i∈{0,1,...,2n}⊗N

Ψi(x)|fi〉 (28)

where we have written i= (i1, . . . , iN), and the coefficient function reads7

Ψi(x) =
N∏

p=1

fip(xp). (29)

It then follows immediately that the final score function output from our neural network can be viewed
as the value of the wavefunction corresponding to the ‘network state’8

|Ψy〉=
∑

i∈{0,1,...,2n}⊗N

Ψy;i|fi〉 (30)

corresponding to the label y ∈ C:

αy(x) :=
∑

i∈{0,1,...,2n}⊗N

Ψi(x)Ψy;i = 〈x|Ψy〉. (31)

At this point, it is tempting to associate to our wavefunction the usual probabilitic interpretation à la
Born’s rule. To do this, introduce the normalised network states

|Ψy,0〉 :=
1√∑

y∈C〈Ψy|Ψy〉
|Ψy〉 (32)

and define the joint probability density function

p(y,x) := |〈x|Ψy,0〉|2. (33)

Building a (generative) network learning the states |Ψy,0〉 that gives a good approximation to the above
probability density function is beyond the scope of the current paper; here we focus on the classification task
and hence we can only trust p(y,x) in the subspace ofH where x resembles the training data in some way.
Instead, for the classification task at hand, the relevant probability is the conditional probability

p(y|x) = p(y,x)

p(x)
=

|〈x|Ψy,0〉|2∑
y ′∈C |〈x|Ψy ′,0〉|2

=
|〈x|Ψy〉|2∑

y ′∈C |〈x|Ψy ′〉|2
. (34)

As is manifest from the last equality, the conditional probability is insensitive to the normalisation (32) of the
network state |Ψy〉. This justifies our classification given the network output αy(x) = 〈x|Ψy〉:

y(x) := arg max
y

|αy(x)|. (35)

Note that this is different from the more common ways of assigning probabilities to the outputs of such a
classification network, such as through a softmax function.

3.2. Entanglement entropy
Equipped with the interpretation described in section 3.1 of our architecture as quantum states, we are now
ready to ‘measure’ the behaviour of the the neural network using quantum mechanical tools. In particular, in
this subsection we will discuss the EE of the network.

6 But not invariant under swapping 0.05 and 0.95, For this reason the periodicity is not so significant in practice for real data. The choice
for a periodic representation is simply made for convenience and does not seem to hinder the classification in our experiments.
7 Note that |x⟩ is a product state and is in particular not entangled.
8 Note that a wavefunction is complex-valued in general. As mentioned earlier, here we work with real functions for convenience and have
Ψ∗

y;i =Ψy;i.
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As the name suggests, the EE measures the extent to which a quantum state is entangled across two
different subsystems, U and U. It is defined as the von Neumann entropy of the reduced density matrix. For
instance, if the state is a product state of two separate systems, then its EE (with respect to the subsystems)
vanishes.

Here, we consider a bipartition (U,U) of the images that spatially splits the pixels x= (xU,xU) into two
groups, with the corresponding Hilbert space decompositionH=HU⊗HU. To discuss EE of different
network states corresponding to different classification labels y ∈ C, we normalise the network state as

|Ψy,∗〉 :=
1√

〈Ψy|Ψy〉
|Ψy〉. (36)

Note that this is a different normalisation from (32). The corresponding reduced density matrix, obtained by
tracing the density matrix over the subspaceHU, reads

ρy;U := TrHU

[
|Ψy,∗〉〈Ψy,∗|

]
, (37)

which satisfies TrHU
ρy;U = 〈Ψy,∗|Ψy,∗〉= 1. Then the EE of the network state |Ψy,∗〉 corresponding to the

bipartition (U,U) is given by

S(ρy;U) =−TrHU

(
ρy;U logρy;U

)
. (38)

This quantity measures the extent to which the quantum state is entangled across the subspaces U and U, i.e.
the degree to which the quantum state fails to be separable into two parts, belonging to two subsystems. For
instance, if |Ψy〉 is a product state |Ψy〉= |Ψy〉U⊗ |Ψy〉U with |Ψy〉U ∈HU and |Ψy〉Ū ∈HŪ, then the
probability (34) also takes the form of a product of contribution from U and Ū, and we have S(ρy;U) = 0.

In what follows we will focus on the bipartition with U and U each contains N/2 pixels (or lattice sites),
corresponding to the two inputs of the top pooling tensor. Computationally, this is the biparition whose EE
is easiest to compute, corresponding to the fact that one needs to cut the least number of legs in the diagram.
In the next section we flatten the input images in ways such that this bipartition corresponds to either the
left/right or the up/down separation of the images. In this case, analogous to the basis (27) for the total
Hilbert spaceH, we introduce the corresponding orthonormal basis forHU

∼=HU
∼= (C2n+1)⊗N/2 :

|fi〉= |fi1〉⊗ · · · ⊗ |fi N
2

〉, (39)

for i= (i1, . . . , i N
2
) ∈ {0,1, . . . ,2n}⊗ N

2 . The top pooling layer of the tensor decomposition gives the following
expression

|Ψy〉=
∑
I

ã(L)yI |ϕI〉U⊗ |ϕI〉U , (40)

where

|ϕI〉=
∑

i∈{0,1,...,2n}⊗ N
2

ϕI,i|fi〉 (41)

for both |ϕI〉U and |ϕI〉U. Recall that |ϕI〉U = |ϕI〉U under the natural isomorphismHU
∼=HŪ, and this is a

consequence of the weight sharing feature of our architecture. Also note that the y-dependence in |Ψy〉 comes
entirely from the top layer tensor a(L).

Putting it together, we have the following expression for the reduced density matrix (37)

ρy;U =
1

〈Ψy|Ψy〉
∑
I,J

(ã(L)yJ )∗ ã(L)yI TrHU
(|ϕI〉U⊗ |ϕI〉U U〈ϕJ|⊗ U〈ϕJ|)

=
1

〈Ψy|Ψy〉
∑

i,i ′∈{0,1,...,2n}⊗ N
2

(My)i,i ′ |fi〉〈fi ′ |
(42)

where the matrix elements are given by

(My)i,i ′ =
∑
I,J

∑
i ′ ′∈{0,1,...,2n}⊗ N

2

(ã(L)yJ )∗ ã(L)yI ϕI,i ′ ′ ϕ
∗
J,i ′ ′ ϕI,iϕ

∗
J,i ′ . (43)
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From the eigenvaluesmi, i ∈ {0,1, . . . ,2n}⊗ N
2 of the above matrix, we readily compute the EE (38) of the

network states to be

S(ρy;U) =−
∑

i∈{0,1,...,2n}⊗ N
2

pi logpi, (44)

with

pi :=
mi∑
i ′ mi ′

. (45)

4. Experiments

4.1. Setup
We trained the network on two datasets, MNIST [34] and Fashion-MNIST [35], using PyTorch [36]. Each
contains 60 000 training images, 10 000 test images, and a total number of |C|= 10 classes. The images are
resized to 16× 16, so that the flattened array contains N= 256= 28 elements, resulting in a depth L= 8
network.

The number of parameters of the network can easily be calculated,

P(N;{dℓ}) =
L=log2 N∑

l=0

(dℓdℓ+1 + 2dℓ) , (46)

where the first term comes from the convolution (without bias), and the second from the batch normalisation
layers. Note that, in the case that dℓ is independent of ℓ, the number of parameters grows like log2N with N.

Our main examples will be networks with number of channels increasing with the depth, dℓ = d(ℓ+ 1)
for ℓ= 0, . . . ,L, and dL+1 = |C|= 10 for the final layer. This results in the following total number of
parameters

P(N) =
d2

3
(log2N)

3
+(d2 + d)(log2N)

2
+

(
2

3
d2 + 13d

)
log2N+ 12d,

P(28) = 240d2 + 180d,

(47)

which scales quadratically with d and merely with (powers of) log2N, a result of the tree tensor network
structure, which eliminates quadratic growth, as well as weight-sharing, which eliminates linear growth with
N . We used values of d from 4 up to 40, resulting in a number of parameters in the range (1320,391200).

Classification of an input x is done by choosing the label y for which the output |αy(x)| is the largest (cf
(35)), consistent with the quantum interpretation discussed in section 3.1. We used the following square
distance loss function,

L=
1

|B|

|B|∑
b=1

|C|∑
y=1

(
αy(x)− δy,l(x)

)2
, (48)

where l(x) is the correct label of x, the first sum is over the images in the batch and the second is over the
different labels. Reducing this cost means that the output in the correct label channel moves closer to 1, while
the outputs in the rest of the channels move closer to 09.

Optimization was done by using the AdamW optimizer [37], with weight decay parameter 0.01 and
learning rate parameter 0.01, which was reduced by half every ten epochs. Batch size was chosen equal to 50
and we trained for a total of 90 epochs. Tensor network computations for evaluating the EE were done using
the Tensornetwork library [38]. The corresponding code can be found here.

4.2. Results and discussion
The best (average) test accuracies achieved among all experiments were 97% for MNIST and 89% for
Fahsion-MNIST, which are comparable to the results obtained in [26]. Note that since our main goal is the

9 Given (34) and (35) it might be tempting to use the loss function |αy(x)| or |αy(x)|2, or even just− log

(
|αl(x)(x)|

2∑
y |αy(x)|2

)
. However, these

choices all give worse training results than (48). One simple reason is just that the above loss is invariant under a sign change of αy and
hence does not admit a unique minimum.

9
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Figure 2. (a), (b) Accuracy and cost during training for a typical run of an experiment with d= 18 for both datasets. (c) The
corresponding left/right average EE trend, where we average over the classes with an averaging window of two epochs. (d) The
up/down average EE trend for a different run with the same hyperparameters.

study of the entanglement structure of this type of network architecture instead of achieving the very best
classification results, we did not perform an exhaustive hyperparameter search, so it is likely that the achieved
accuracies can be improved further. Figure 2 depicts a typical (as opposed to optimal in terms of attained
accuracies) run of an experiment with d= 18 (81000 parameters), for both datasets10. Notice that after
epochs 30–50 the test accuracy and cost value start to slowly approach their final values. Figure 2(c) shows
the trend (averaged over two epochs) of the average EE of all ten output channels, according to a left/right
partition, as it develops during training. Upon initialization of the network the EE is practically zero, and
during the first few epochs its value can vary widely among different initialization seeds, optimizers and
number of hyperparameters. However, after the accuracy and the cost value has stopped changing rapidly,
which happens after around ten epochs, the EE starts to increase steadily. This signifies a rise in the degree of
correlations that are built between the left/right parts of the network in order to classify the images with
more precision. This is to be contrasted with the ‘accidental’ entanglement that appear during the first ten
epochs in the MNIST case, when the network is not yet able to correctly classify the images systematically.

Note that in the MNIST case the value of the EE seems to stabilise during the final epochs, whereas it
appears to keep growing in the case of F-MNIST. A possible explanation is that at an accuracy of ~88% there
are many more misclassifications in the latter case compared to the former case, and thus the minimum EE
needed for near-optimal classification has not yet been reached. In support of this, we note that after around
epoch 30 the F-MNIST plot resembles the region between epochs 10 to 40 of the MNIST plot, where the
corresponding accuracy is still lower than the final achieved value.

Figure 2(d) shows the average EE trend for a different run with the same hyperparameters, but with a
different flattening of the images such that the top pooling corresponds to an up/down division of the
images. Note that the development trend of the up/down EE is very similar to that of the left/right EE. We
believe that the heuristic explanation of the trend mentioned above for the left/right EE also applies to the
case of up/down EE.

As mentioned before, in the (final value of the) EE of a rather different neural network has been
measured in the context of MNIST dataset. We note that the order of magnitude of the final EE we measured

10 In the experiments, we do not notice a very significant difference in performance in the range d= 10–40.
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Figure 3. (a) The average EE trend versus the value of the cost function for a typical run of an experiment with d= 18, for both
datasets. (b) The corresponding plots across multiple experiments.

is similar to that in suggesting that EE is indeed a robust quantitative measure of certain key properties of the
given tasks.

Finally, in figure 3(a) we depict the average EE versus the value of the cost function, for the same run
throughout the training process, as recorded in figures 2(a)–(c). The data before the 30th epoch are
discarded due to their large fluctuations, as noted earlier. We observe a distinct negative correlation between
EE and the value of the cost function, which is to say that higher values of the EE tend to appear when the
network has lower values for the cost function. This can be seen more easily in figure 3(b), where the plots
contain data from many different experiments, across different initialization seeds and choices of
hyperparameters, which appear as ‘islands’ in a larger landscape that also exhibits some degree of negative
correlation. This is consistent with our interpretation that the EE of the network starts increasing steadily
only as the network starts learning the finer features of the data. Also note that this negative correlation is less
evident in the test cost, here depicted by the red dots; we believe that this is due to the fact that the test cost
drops much slower than the training cost after a certain point during training. This suggests that the
aforementioned increase of the EE is in part also tied to overfitting.

In this work, we have introduced the q-CNN architecture and demonstrated that it is capable to perform
the classification tasks on the MNIST and Fashion-MNIST datasets. We have subsequently computed the
entanglement entropies given the bipartition corresponding to the left/right and up/down of the images. The
results of these experiments provide evidence that (1) the entanglement structure is necessary for the
classification task (2) the network does learn this structure during training.

Potentially, the entanglement structure that a network needs to attain before it can start performing the
designated task successfully can be a crucial hint to the architecture design and the choice of
hyperparameters, as is prominently the case in the analogous context of designing tensor networks to
represent specific quantum states. See also our comments section 1.1. In case the knowledge of the necessary
level of entanglement is unavailable, a reasonable proxy could be the (estimated) mutual information of the
relevant dataset. In particular, lessons from quantum physics indicate that how entanglement varies with the
length scale of the partition could be an important feature to consider. See [27] for a recent review.

It would be interesting to explore entanglement structure of other bipartitions, corresponding to
shorter-ranged entanglement for instance, apart from the left/right and up/down bipartitions. It would also
be interesting to investigate the entanglement structure of a generative network approximating the
probability density function (34), as such a network will have a more global knowledge of the Hilbert space
H. Finally, it would be interesting to compute the EE of the network trained by physical data, for instance in
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the problem of phase classification of physical systems such as the Ising model, and compare that to the EE of
generic quantum states in the corresponding physical system.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/vanagia/entangled-q-cnn.
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