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ABSTRACT 
 

In this paper, we proposed a continuous linear multistep hybrid block method for the solution of 

Volterra integral equation of second kind of the form𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝜑(𝑥, 𝑠)𝑦(𝑠))𝑑𝑠
𝑥𝑛

𝑥0
, using power 

series and trigonometrically fitted function as the trial solution for the approximation via collocation 
techniques. The proposed hybrid block scheme is found to be consistent, zero-stable and 
convergent. The implementation of the scheme on numerical problems and comparisons of results 
obtained with existing numerical method will be included 
 

 
Keywords: Multistep hybrid block method, power series, collocation and interpolation method, second 

kind of Volterra integral equations. 
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1. INTRODUCTION 
 
Volterra integral equation is a special kind of 
integral equation which is classified into three: 
the first, second and third kind. In this research, 
we develop two off - grid points of hybrid block 
method for the solution of second kind of Volterra 
integral equation due to its characteristics and 
uniqueness. In the literature, the second kind of 
Volterra integral equation (VIE) according to [1] is 
of the form: 
 

 𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝜑(𝑥, 𝑠)𝑦(𝑠))𝑑𝑠
𝑥𝑛

𝑥0
              (1)  

 
Where 𝑓(𝑥)   is a given function and 𝜑(𝑥, 𝑠)  is 
called the kernel of integral equation. Volterra 
integral equation (VIE) appears especially when 
we try to transform an initial value                          
problem into integral form, so that, the solution of 
the equation can be easily obtained than the 
original initial value problem [2]. Solving (1) is 
equivalent to solving the following initial value 
problem for ordinary differential equations of the 
first order 
 

𝑦′(𝑥) = 𝑓′(𝑥) + 𝜑(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑓(𝑥0) (2)  

 
The Volterra Integral Equations are  widely               
used in population growth models, physics, 
chemistry, and engineering [3]. Particularly 
important in science and engineering are 
systems of linear integral equations and their 
precise or approximate solutions. In                 
the domains of engineering  and applied 

research, some of these  integral equations 
cannot  be solved explicitly, hence          
approximation or numerical   methods must 
frequently be used [4]. In recent years, many 
strategies for resolving Volterra integral 
equations are suggested by many researchers 
such as: [5,6,7,8], and much recently by 
[9,10,11,12,13,14] and [15] respectively.    

 
2. DERIVATION OF THE PROPOSED 

METHOD 
 
In this section, we derive three step with  two off-
grid points of hybrid block method   for the 
integration of Volterra integral equation of second 

kind by carefully selecting 
3

1
=p  and 

3

2
=q  

for 𝑝, 𝑞 ∈  [0,1] 

 
Let the approximate series solution and 
trigonometrically fitted function of the Eq. (1) 
takes the form of  

 

( ) 
===

++=
2

1

2

1

3

0

cossin
j

j

j

j

j

j

j xxxxz               (3)  

 
Where ∅𝑗 and 𝜆𝑗  are the coefficients to be 

determined. 
 
Consider the ordinary differential equation 
 

( ) ( ) ( ) 000 '',,',,'' zazzazzzxfz ===   (4) 

 
Subject to the condition 
 

( ) ( ) ( )xfxyxz −=                      (5) 

 
The second derivative of Eq. (3) is given as; 
 

( ) ( ) ( )
3 2 2

2
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'' 1 (sin ) cos
j

j j
j

j j j

z x j j x xx  
−

= = =

= − − −                 (6) 

 
Substituting Eq. (4) into (1) gives 
 

( ) ( )  
= − =

− −−−=
3
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2 cossin1',,
j j j

jj

j
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Interpolating (3) at  1,0, =+ nx  and collocating (6) at  }3,2,1,
3

2
,

3

1
,0{, =+ nx  leads to the system 

of nonlinear equations written in the form  
 

( ) ( )AxXxzn = (8)
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Using the Gaussian elimination method to solve Eq. (8) gives the coefficients  

321

3

2

3

1010 ,,,,,,,  ,which are then substituted into (3) and simplified to give the implicit 

second derivative hybrid block method of the form;  
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Differentiating equation (9) to give: 
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Where 
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 Evaluating Eq. (9) at non-interpolating points  
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xxxxx  yields 
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Evaluating Eq. (9) at all points, to obtain  
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This gives the following equation in matrix form  
(13) 

3221121 RBRBRAZA ++=
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Substituting Eq. (14) into Eq. (13) and multiply by the inverse of 1A  gives the hybrid block in the form:
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By putting Eq. (5) in Eq. (15) yield the proposed hybrid block schemes of the form:  
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                      (16) 

 

 

      

 

3. ANALYSIS OF THE HYBRID BLOCK METHOD  
 
In this section, the analysis of the order, error constant, convergence and stability of proposed 
scheme is carried out.  
 

3.1 Order and Error Constant of the Proposed Method 
 
Let the linear difference operator ℓ associated with the new method (16) be defined as     
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 (18) 

 
If we assume that 𝑦(𝑥) has many higher derivatives and collecting the terms, we have: 
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 ℓ[𝑦(𝑥); ℎ] = 𝑐0̅𝑦(𝑥) + 𝑐1̅ℎ𝑦′(𝑥) + 𝑐2̅ℎ
2𝑦′′(𝑥) + ⋯+ 𝑐𝑝̅+2ℎ

𝑝+2𝑦(𝑝+2)(𝑥)                     (19) 

 
According to [11], the proposed scheme has order 𝑝 if,    

                   

𝑐0̅ = 𝑐1̅ = 𝑐2̅= … = 𝑐𝑝̅+1 =

0, 𝑐𝑝̅+2 ≠ 0 

 

The proposed method is of order 𝑝 = ⌈7,7,7, 7,7, 7,7, 7,7, 7⌉𝑇, with error constant  
 

𝐶9 = ⌈
286

793618560
,

107

12400290
,

1

72576
,

1

5670
,

11

13440
,

281

14696640
,

281

2755620
,

11

544320
,

17

34020
,

13

4032
⌉
𝑇

 

 

3.2 Consistency of the Method 
 
According to Areo and Omojola (2015), the hybrid block method is said to be consistent if it has an 
order more than or equal to one i.e. (𝑝 ≥ 1). Since the Eq. (16) is of order𝑝 = 7, therefore, the 
proposed hybrid block method is consistent 
 

3.3 Zero-Stability of the Proposed Method 
 
The linear multistep hybrid block method is said to be zero-stable as ℎ → 0, if the roots of the first 

characteristics polynomial defined by 𝜌(𝑧) = 𝑑𝑒𝑡[∑ 𝐴(𝑖)𝑍(𝐾−𝑖)𝑘
𝑗=𝑜 ] satisfies  |𝑧| ≤ 1 and every root of 

|𝑧| = 1 has multiplicity not exceeding the order of the differential equation. Awoyemi et.al. (2011)  
 

𝐴0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1   0   0   0   0   0   0   0

.
0   1   0   0   0   0   0   0

.
0   0   1   0   0   0   0   0

.
0   0   0   1   0   0   0   0

.
𝑜   0   0   0   1   0   0   0

.
0   0   0   0   0   1   0   0

.
0   0   0   0   0   0   1   0

.
0   0   0   0   0   0   0   1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,         𝐴′ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0   0   0   0   0   0   0   1

.
0   0   0   0   0   0   0  1

.
0   0   0   0   0   0   0   1

.
0   0   0   0   0   0   0   1

.
𝑜   0   0   0   0   0   0   1

.
0   0   0   0   0   0   0   1

.
0   0   0   0   0   0   0   1

.
0   0   0   0   0   0   0   1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
We have 𝜌(𝑧) = 𝑧8(𝑧 − 1) = 0, 𝑧 = 0.0.0.0.0.0.0,0,1 

 
Since|𝑧| = 1, therefore. The proposed method is zero-stable   

 
3.4 Convergence of the Proposed Method     
 
The necessary and sufficient condition for a linear multistep hybrid block method to be convergent is 
to be consistent and zero stable. Since, our scheme satisfies the two conditions, hence the Eq. (9) is 
convergent.     
 

4. IMPLEMENTATION OF METHOD  
 
In this section, we implement the proposed hybrid block method on two considered problems of 
second kind VIEs. 
 

Problem 4.1: Consider the second kind linear volterra integral equation  
 

𝑋(𝑡) = 𝑡2 + ∫ (𝑡 − 𝑠)𝑥1(𝑠)𝑑𝑠
𝑥

0
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With exact solution  
 𝑋(𝑡) = 2𝑐𝑜𝑠ℎ𝑡 − 2, ℎ = 0.1 
Source: Muturi et al. (2014) 
 

Converting the nonlinear VIE to a second order ODE, we obtained      

𝑥(𝑡) = 𝑡2 + ∫ (𝑡 − 𝑠)
𝑡

0
𝑥1(𝑠)𝑑𝑠          

𝑥′(𝑡) = 2𝑡 + ∫ 𝑥1(𝑠)
𝑡

0
𝑑𝑠        𝑥′′(𝑡) = 2 + 𝑥1(𝑠) 

Then, the second order ODE is given as       𝑧′′ = 0𝑧0
′ + 𝑧0 + 2 

Where  𝑧0 = 0, 𝑧′ = 0.   
 

Table .1. The exact solution and computed results from the propose methods for problem 1 
 

X  Exact   Numerical Result Error in 
Muturi et al. 
(2014) 

Error in 
Proposed 
Method  

0.1 0.01000833611160719800 0.01001667222375875757 1.0 E-05        2.7763 E-13 
0.2 0.04013351123815169260 0.04013351123459477332  3.0 E-05  3.5569 E-12 
0.3 0.09067702825772097000 0.09067702827425125113  8.0 E-05  1.6530 E-11 
0.4 0.16214474367690961860 0.16214474375907952666  1.40 E-04 8.2169 E-11 
0.5 0.25525193041276157040 0.25525193055694029498 2.20 E-04 1.4417 E-10 
0.6 0.37093043648453540760 0.37093043671821427031  3.20 E-04 2.33678 E-10 
0.7 0.51033801126188603640 0.51033801163676863682 4.40 E-04 3.74882 E-10 
0.8 0.67486989260968919600 0.67486989312433225989 5.90E-04 5.14643 E-10 
0.9 0.86617277089754877560 0.86617277158760432182 7.70E-04 6.9005 E-10 
1.0 1.08616126963048755700 1.08616127056068089180  9.80 E-04 9.3019 E-10 

 

Problem 2  
 

Consider the second kind linear volterra integral equation  

𝑈(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑈(𝑡)𝑑𝑡
𝑥

0
   

 With exact solution: 
𝑈(𝑥) = 𝑒𝑥, ℎ = 0.1     
 

Source: Shoukralla and Ahmed (2020) Converting the  
VIE to a second order ODE, we obtained 

 𝑢(𝑥)1 + 𝑥 + ∫ (𝑥 − 𝑡)
𝑥

0
𝑢(𝑡)𝑑𝑡 

  𝑢′(𝑥) = 1 + ∫ 𝑢(𝑡)
𝑥

0
𝑑𝑡𝑢′′(𝑥) = 𝑢(𝑥) , The second order ODE is then given as 𝑧′′ = 0𝑧′ + 𝑧 

where 𝑧0 = 0, 𝑧′ = 0.   
 

Table 2. The exact solution and computed results from the propose methods for problem 2 
 

X  Exact   Numerical Result Error in 
Shoukralla and 
Ahmed (2020) 

 Error in 
Proposed    
Method  

0.1 1.1051709180756476248 1.10517091807580048840 1.4089 E-09 1.5286 E-13        
0.2 1.2214027581601698339 1.22140275815817059020 9.1493 E-08 1.9992 E-12 
0.3 1.3498588075760031040 1.34985880758546021050 1.0576  E-05 9.4571 E-12 
0.4 1.4918246976412703178 1.49182469768812457810 6.0309 E-06 4.6854 E-11 
0.5 1.6487212707001281468 1.64872127078173504370 2.3354 E-05  8.1607 E-11 
0.6 1.8221188003905089749 1.82211880052608176310 7.08004 E-05 1.3557 E-10 
0.7 2.0137527074704765216 2.01375270769626071760 1.8129 E-04 2.2578 E-10 
0.8 2.2255409284924676046 2.22554092880652021370 4.1026 E-04 3.1405 E-10 
0.9 2.4596031111569496638 2.45960311158724651560 8.4486 E-04 4.3029 E-10 
1.0 2.7182818284590452354 2.69286592330700708760 1.6151 E-03 2.5416 E-02 
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5. DISCUSSION AND CONCLUSION 
 
In this research, Continuous Linear Multistep 
Hybrid Block Method was proposed for the 
solution of integral equation of second kind. We 
investigated the property of this proposed 
method in terms of order, error constant, 
consistency, zero-stability and convergence 
analysis. The scheme was also used to solve 
numerically two problems of volterra integral 
equation of second kind and the results were 
compared with [9] and [10]. From the Table 1 
and 2, we discovered that, the proposed 
multistep hybrid block method were capable of 
Handling the second kind VIEs. The results 
obtained from Table 1 and 2 indicated that our 
proposed methods are considerably much more 
accurate than the existing numerical methods. All 
computation and program were carried out with 
the aid of MAPPLE 15 software [16]. 
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