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Abstract
In this study, the effects of a double dose vaccination are examined using the Covid-19 mathematical model.
In addition to obtaining the basic reproduction number and analyzing the model’s stability, the sensitivity
analysis was also performed. The results obtained demonstrates that the model’s solutions always converge
to the endemic equilibrium point whenever reproduction number is greater than 1, irrespective of the initial
solution. Sensitivity analysis demonstrated that the average number of encounters between infected/exposed
individuals per unit time increases whenever the reproduction number R0 increases. Numerical analysis
demonstrated that vaccination reduces the number of infected people compared to when no vaccination is
administered.
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1 Introduction

A class of viruses known as coroviruses can infect both humans and other mammals like pigs and bats . A
new coronavirus called COVID-19 causes a respiratory infection that spreads between people via tiny droplets
released during coughing, sneezing, or speaking [1, 2]. In December 2019, Wuhan City, Hebei Province, China,
received the first reports of the virus. The World Health Organization (WHO) designated it a global epidemic
after it spread to numerous nations. The symptoms of the COVID-19 virus, according to the WHO, include
fever, dry cough, exhaustion, sore throat, pains, diarrhea, nasal congestion, and loss of taste or smell [3, 4, 5].

Many mathematical models have been developed by researchers since COVID-19 first surfaced in late 2019
to help in understanding the dynamic spread and control of the pandemic in various regions for example
[1, 2, 4, 6, 7, 8, 9] among others. An SEIR (Susceptible-Exposed-Infected-Recovered) model was used by [6] and
[7] to quantitatively predict the transmission of COVID-19. Without taking into account the fact that persons
who have been vaccinated cannot spread disease to others at the same rate as those who are yet to be vaccinated.

Different health organizations came up with a number of vaccinations like:

1. The Pfizer, BioNTech Comirnaty vaccine,

2. The SII/COVISHIELD and AstraZeneca/AZD1222 vaccines,

3. The Janssen/Ad26.COV 2.S vaccine developed by Johnson & Johnson,

4. The Moderna COVID-19 vaccine (mRNA 1273),

among others [3, 10, 11].

Different COVID-19 variants can cause varying levels of infection, symptoms, transmission speed, and susceptibility.
Additionally, it is clear that a medication that is effective for one variants may not be effective for another. Due
to the advent of a novel variety with potential for immunological escape and reinfection, most countries have
recommended booster doses in order to strengthen the population’s defense against COVID-19 [8].

In this paper we formulate and analyze An SVEIR (Susceptible-Vacinated-Exposed-Infected-Recovered) model
in which individuals can receive first vaccination or second vaccination doses

2 The Model

We formulate a model in which the total human population at any time t denoted by N is subdivided into
classes, S(t) the class of individuals susceptible to Covid-19 infection. Recruitment into susceptible class is done
at a rate Λ. The class V1(t) consists of individuals who have received first vaccination, this vaccination occurs at
the rate a. Second vaccination is done at the rate b and this leads to the creation of the class V2(t). Susceptible
individuals, individuals who have received the first and second vaccination dose can be exposed to Covid-19
infection at the rates λ, λ1 and λ2 respectively, thus progressing to the exposed class E(t), where λ2 < λ1 < λ.
The class I(t) consist of individuals who are asymptomatically infected with Covid-19 infection, this infection
occurs at the rate ε. Recovery of Covid-19 infection occurs at the rate β and thus the class R(t) consist of
individuals who have recovered. Mortality occurs among Covid-19 patients at the rate δ while natural death is
assumed to occur in all classes at the rate µ.

From the above definitions, the dynamics described can be represented mathematically as;
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Ṡ(t) = Λ− λSI

N
− (a+ µ)S(t)

V̇1(t) = aS(t)− (µ+ b)V1(t)− λ1V1I

N

V̇2(t) = bV1 − µV2(t)− λ2V2I

N

Ė(t) =
(λS + λ1V1 + λ2V2)I

N
− (ε+ µ)E(t)

İ(t) = εE(t)− (µ+ δ + β)I(t)

Ṙ(t) = βI(t)− µR(t) (1)

3 Model Analysis

Based on the fact that the model deals with human population, all the state variables and parameters are assumed
to be non-negative ∀t > 0. This model is studied in the feasible region R where (S(t), V1(t), V2(t), E(t), I(t), R(t)) ∈
Ω ∈ R6

+ and it can be shown that as t tends to infinity;

0 ≤ N(t) ≤ Λ

µ
(2)

Which shows that the set of solutions is bounded. Thus, the model Equation (1) is epidemiologically well posed
in the region Ω.

The basic reproduction number R0 is defined as the average number of secondary Covid-19 infections produced
by a single infectious individual over the course of their infectious period when introduced into an entirely
susceptible population. The basic reproduction number, R0, for model (1) computed using the next generation
matrix method is given by;

R0 =
λε

(ε+ µ)(δ + β + µ)
(3)

4 Disease-free Equilibrium Point

The disease-free equilibrium point is a steady-state solution for which there is no disease or infection in the
population [12]. To obtain the disease-free equilibrium point we set the normalised model system (1) equal to
zero as shown below, E0 = {S(t), V1(t), V2(t), E(t), I(t), R(t)} = ( Λ

µ
, 0, 0, 0, 0, 0).

5 Local Stability of the Disease free Equilibrium

Theorem 5.1. The infection free equilibrium E0 is locally asymptotically stable if and only if R0 < 1.

Proof. The Jacobian matrix of Equation (1) is given by

J =



−(a+ µ+ λI
N

) 0 0 0 −λS
µ

0a

−(µ+ b+ λ1I
N

) 0 0 −λ1V1
N

00 b

−(µ+ λ2I
N

) 0 −λ2V2
N

0λI
N

λ1I
N

λ2I
N

−(ε+ µ) λS
N

+ λ1V1
N

+ λ2V2
N

00 0 0 ε
−(µ+ d+ δ) 00 0 0 0 β

−µ

 (4)
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Clearly −µ is an eigenvalue. We analyse the reduced matrix

J =


−(a+ µ+ λI

N
) 0 0 0 −λS

µ
a −(µ+ b+ λ1I

N
)

0 0 −λ1V1
N

0 b −(µ+ λ2I
N

) 0

−λ2V2
N

λI
N

λ1I
N

λ2I
N

−(ε+ µ) λS
N

+ λ1V1
N

+ λ2V2
N

0 0
0 ε −(µ+ d+ δ)

 (5)

Applying the Routh-Hurwitz criterion [13], for stability analysis, then matrix J in equation (6) will have negative
real roots if and only if the tr(J) < 0 and det(J) > 0, and thus the trace of Equation (5) is negative and the
determinant is given by

detJ2(E∗) = (−d− δ − µ)(−ε− µ)(−a− Iλ

N
− µ)(−b− µ− Iλ1

N
)(−µ− Iλ2

N
)

−ε
[
−
Iλ2(−b(aSλ

N
+ aV1λ1

N
+ IλV1λ1

N2 + µV1λ1
N

)− (−a− Iλ
N

)V2(−b−µ− Iλ1
N

)λ2

N
)

N

+(−µ− Iλ2

N
)

(
−
Iλ1(aSλ

N
+ 2V1λ1

N
+ IλV1λ1

N2
µV1λ1
N

)

N
+ (−b− µ− Iλ1

N
)

(
SIλ2

N2
+ (−a− Iλ

N
− µ)(

Sλ

N
+
V1λ1

N
+
V2λ2

N
))

)]

6 Global Stability of the Disease-free Equilibrium

The Castillo Chavez theorem [14] is applied to study the global stability of the disease-free equilibrium. We
rewrite model (1) in the form;

dX

dt
= H(X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (6)

Where X ∈ R4 denotes the number of susceptible individual and Z ∈ R2 denotes the number of infected
individuals.

E0 = (
Λ

µ
, 0, 0, 0, 0, 0) (7)

denotes the disease free equilibrium point of this system where

X∗ = Λ
µ

The conditions below must be met to guarantee global asymptotic stability
dX
dt

= H(X, 0), X0 is globally Asymptotically stable (GAS)

G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0, for(X,Z) ∈ Ω (8)

Where P = DzG(X0, 0) is an M- matrix (the off diagonal elements of P are nonnegative) and Ω is the region
where the model makes biological sense. If system (6) satisfies conditions in (8) then the following theorem
holds:

Theorem 6.1. The fixed point E0 = (X0, 0, 0, 0, 0, 0) is a Globally Asymptotically Stable equilibrium point of
model (1) provided that R0 < 1 and the conditions in (8) are satisfied.
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Proof.

H(X, 0) = Λ− (µ+ a)S, aS − (µ+ b)V1, bV1 − µV2 (9)

And G(X,Z) = PZ − Ĝ(X,Z) where

P =

[
−(ε+ µ) 0

ε −(µ+ δ + β)

]
(10)

Ĝ(X,Z) =

[
Ĝ1(X,Z)

Ĝ2(X,Z)

]
=

[ −(λS+λ1V1+λ2V2)I
N

0

]
(11)

Considering the Jacobian matrix, and replacing S(t) = Λ
µ

, I(t) = 0, E(t) = 0, we obtain Ĝ1(X,Z) = 0 and

so the conditions in (8) are met so E0 is globally asymptotically stable when R0 < 1. Epidemiologically, any
perturbation of the model by the introduction of infectives shows that the model solutions will converge to the
DFE whenever R0 < 1. Global asymptotic stability shows that regardless of any starting solution, the solutions
of the model will converge to DFE whenever R0 < 1. This implies that we do not expect the disease outbreak
for life. Thus, the epidemic will die out or will not develop in the population.

This implies that given a large perturbation of the DFE by the introduction of free virus particles, the solutions
of model (1) will eventually converge to the DFE whenever R0w < 1.

7 Local Stability of Endemic Equilibrium Point

For an infection to be endemic in a population, E∗ > 0. At the endemic equilibrium, persistence of infection
occurs and thus at least one of the infected classes is greater than zero.
The Jacobian of Equation (1) at endemic state E∗(S∗(t), V ∗

1 (t), V ∗
2 (t), E∗(t), I∗(t), R∗(t)) is given by

J =



−(a+ µ+ λI∗

N
) 0 0 0 −λS

∗

N
0a

−(µ+ b+ λ1I
∗

N
) 0 0 −λ1V

∗
1

N
00 b

−(µ+ λ2I
∗

N
) 0 −λ2V

∗
2

N
0λI

∗

N
λ1I

∗

N
λ2I

∗

N

−(ε+ µ) λS∗

N
+

λ1V
∗
1

N
+

λ2V
∗
2

N
00 0 0 ε

−(µ+ d+ δ) 00 0 0 0 β
−µ


(12)

Clearly −µ is an eigenvalue. We analyse the reduced matrix

J =


−(a+ µ+ λI∗

N
) 0 0 0 −λS

∗

N
a −(µ+ b+ λ1I

∗

N
)

0 0 −λ1V
∗
1

N
0 b −(µ+ λ2I

∗

N
) 0

−λ2V
∗
2

N
λI∗

N
λ1I

∗

N
λ2I

∗

N
−(ε+ µ) λS∗

N
+

λ1V
∗
1

N
+

λ2V
∗
2

N
0 0

0 ε −(µ+ d+ δ)

 (13)

An important criterion by Routh-Hurwitz gives the necessary and sufficient conditions for all the roots of the
characteristic polynomial (with real coefficients) to lie in the left half of the complex plane. In other words, all
the roots of the polynomial are negative or have negative real roots if the determinants of all Hurwitz matrices
are positive [13].

From the Jacobian matrix (13), the trace is negative and the determinant is given by

detJ2(E∗) = (−d− δ − µ)(−ε− µ)(−a− I∗λ

N
− µ)(−b− µ− I∗λ1

N
)(−µ− I∗λ2

N
)
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−ε
[
−
I∗λ2(−b(aS

∗λ
N

+
aV ∗

1 λ1

N
+

I∗λV ∗
1 λ1

N2 +
µV ∗

1 λ1

N
)− (−a− I∗λ

N
)V ∗

2 (−b−µ− I∗λ1
N

)λ2

N
)

N

+(−µ− I∗λ2

N
)

(
−
I∗λ1(aS

∗λ
N

+
aV ∗

1 λ1

N
+

I∗λV ∗
1 λ1

N2

µV ∗
1 λ1

N
)

N
+ (−b− µ− I∗λ1

N
)

(
S∗I∗λ2

N2
+ (−a− I∗λ

N
− µ)(

S∗λ

N
+
V ∗

1 λ1

N
+
V ∗

2 λ2

N
))

)]
The determinant detJ2(E∗) > 0 provided that;

ε

[
I∗λ2

(−a− I∗λ
N

)V ∗
2 (−b− µ− I∗λ1

N
)λ2

N2

+(−µ− I∗λ2

N
)

(
(−b− µ− I∗λ1

N
)(−a− I∗λ

N
− µ)(

S∗λ

N
+
V ∗

1 λ1

N
+
V ∗

2 λ2

N
)

)]
> (−d− δ − µ)(−ε− µ)(−a− I∗λ

N
− µ)(−b− µ− I∗λ1

N
)(−µ− I∗λ2

N
)

−ε
[
− I∗λ2

N
(−b(aS

∗λ

N
+
aV ∗

1 λ1

N
+
I∗λV ∗

1 λ1

N2
+
µV ∗

1 λ1

N
))

+(−µ− I∗λ2

N
)

(
−
I∗λ1(aS

∗λ
N

+
aV ∗

1 λ1

N
+

I∗λV ∗
1 λ1

N2

µV ∗
1 λ1

N
)

N
+ (−b− µ− I∗λ1

N
)

(
S∗I∗λ2

N2
)

)]
Thus, by Routh-Hurwitz criterion, the endemic state E∗(S∗(t), V ∗

1 (t), V ∗
2 (t), E∗(t), I∗(t), R∗(t)) is locally

asymptotically stable. Therefore if R0 > 1 and given a small infective population, each infected individual
in the entire period of infectivity will produce more than one infected individual on average, which shows that
the disease will persist in the population and thus the disease transmission levels can be kept quite low or
manageable with minimal deaths.

8 Global Stability of Endemic Equilibrium Point

The global stability of the equilibrium is obtained by means of Lyapunov’s direct method and LaSalle’s invariance
principle De Leon [15]. Consider the non-linear Lyapunov function

V : (S(t), V1(t), V2(t), E(t), I(t), R(t)) ∈ Ω ⊂ R6
+ : S(t), V1(t), V2(t), E(t), I(t), R(t) > 0

defined as

V = S − S∗ lnS + V1 − V ∗
1 lnV1 + V2 − V ∗

2 lnV2 + E − E∗ lnE + I − I∗ ln I +R−R∗ lnR (14)

where V is in the interior of the region Ω. E∗ is the global minimum of V on Ω and V : {S(t), V1(t), V2(t), E(t), I(t),
R(t)} = 0. Differentiating V with respect to time gives

dV
dt

= V̇ = Ṡ(1− S∗

S
) + V̇1(1− V ∗

1
V1

) + V̇2(1− V ∗
2
V2

) + Ė(1− E∗

E
) + İ(1− I∗

I
) + Ṙ(1− R∗

R
)

Replacing Ṡ(t), V̇1, V̇2, Ė, İ(t), Ṙ from Equation (1), we obtain

V̇ = [Λ−(λI
N

+a+µ)S](1− S∗

S
)+[aS−(µ+b+ λ1I

N
)V1](1− V ∗

1
V1

)[bV1−(µ+ λ2I
N

)V2](1− V ∗
2
V2

)[ (λS+λ1V1+λ2V2)I
N

−
(ε+ µ)E](1− E∗

E
)[εE − (µ+ δ + β)I](1− I∗

I
) + [βI − µR](1− R∗

R
)

At the boundary conditions N ≤ Λ
µ

, then we let N = Λ
µ

97



Apima et al.; Asian Res. J. Math., vol. 20, no. 8, pp. 92-101, 2024; Article no.ARJOM.103924

V̇ = [Λ − (λµI
Λ

+ a + µ)S](1 − S∗

S
) + [aS − (µ + b + λ1Iµ

Λ
)V1](1 − V ∗

1
V1

) + [bV1 − (µ + λ2Iµ
Λ

)V2](1 − V ∗
2
V2

) +

[ (λS+λ1V1+λ2V2)Iµ
Λ

− (ε+ µ)E](1− E∗

E
) + [εE − (µ+ δ + β)I](1− I∗

I
) + [βI − µR](1− R∗

R
)

Using the following relations at the steady state

Λ = λµI∗S∗

Λ
+ aS∗ + µS∗, aS∗ = µV ∗

1 + bV ∗
1 +

λ1µI
∗V ∗

1
Λ

, bV ∗
1 = µV ∗

2 +
λ2I

∗V ∗
2 µ

Λ
,

(λS∗+λ1V V
∗
1 +λ2V

∗
2 )I∗µ

Λ
=

εE∗ + µE∗, εE∗ = µI∗ + δI∗ + βI∗, βI∗ − µR∗

After simplification we get

V̇ = [λµI
∗S∗

Λ
+ aS∗ + µS∗ − (λµ

IΛ
+ a+ µ)S](1− S∗

S
) + [µV ∗

1 + bV ∗
1 +

λ1µI
∗V ∗

1
Λ

− (µ+ b+ λ1Iµ
Λ

)V1](1− V ∗
1
V1

) +

[µV ∗
2 +

λ2I
∗V ∗

2 µ

Λ
− (µ+ λ2Iµ

Λ
)V2](1− V ∗

2
V2

) + [εE∗ +µE∗− (ε+µ)E](1− E∗

E
) + [µI∗ + δI∗ +βI∗− (µ+ δ+β)I](1−

I∗

I
) + [µR∗ − µR](1− R∗

R
)

At endemic states:

V̇ = (λµI
∗S∗

Λ
+aS∗ +µS∗)(2− S

S∗ − S∗

S
)+aS∗(1− V ∗

1
V1

S
S∗ )+ λµI∗S∗

Λ
(1− S

S∗
I
I∗

E∗

E
)+

λ1µI
∗V ∗

1
Λ

(1− I
I∗

V1
V ∗
1

E∗

E
)+

λ2I
∗V ∗

2 µ

Λ
(1− I

I∗
V2
V ∗
2

E∗

E
) + bV ∗

1 (1− V1
V ∗
1

V ∗
2
V2

) + εE∗(1− E
E∗

I∗

I
) + βI∗(1− I

I∗
R∗

R
) ≤ 0

Hence V < 0. We see that V = 0 iff S = S∗, I = I∗, V1 = V ∗
1 , V2 = V ∗

2 , E = E∗, It = I∗t and R = R∗. Thus
the largest compact invariant set in {S(t), V1(t), V2(t), E(t), I(t), R(t)} ∈ Ω : V = 0 is the Singleton E∗, where
E∗ is the endemic equilibrium. Thus E∗ is globally asymptotically stable in the interior of the region Ω. Global
asymptotic stability shows that regardless of any starting solution, the solutions of the model will converge to
E∗ whenever R0 > 1. Epidemiologically, any perturbation of the model by the introduction of infectives shows
that the model solutions will converge to the E∗ whenever R0 > 1. This implies that the disease transmission
levels can be kept quite low or manageable with minimal deaths at the peak times of the re-occurrence.

9 Sensitivity Analysis

Parameter sensitivity is the degree to which an input parameter influences a model’s output. Sensitivity analysis
of R0 can be used to develop a mitigation strategy that will slow the spread of COVID-19 by lowering R0.
Sensitive parameter include those that have a significant impact in the transmission dynamics of the infection.
The sensitivity indices with respect to a parameter X values are given in form of:

χXR0
=
∂R0

∂X
× X

R0
(15)

Table 1 gives a summary of the sensitivity indices of R0 evaluated at the baseline parameters values given in
Table 2.

Table 1. Sensitivity index

Parameter Description Sensitivity Index

λ Transmission rate from S to E +1
ε Transition rate from E to I µ

ε+µ = +0.7915

β Human recovery rate −β
β+δ+µ = −0.9996

µ Natural death rate −µ
β+δ+ε+2µ = −6.255 × 10−5

δ Disease mortality rate −δ
β+δ+µ = −8.237 × 10−5
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Table 2. Parameter values and sources

Parameter Description Unit/Unit Value

β Human recovery rate 0.125 day−1

µ Natural death rate 3.91×10−5 day−1

Λ Recruitment rate 3.178×10−5

day−1

λ Transmission rate from S to E 0.02 day−1

λ1 Transmission rate from V1 to E 0.01 day−1

λ2 Transmission rate from V2 to E 0.005 day−1

a Rate of first dose vaccine 0.4[0-1.0]
b Rate of second dose vaccine 0.5[0-1.0]
δ Disease mortality rate 0.103×10−5

day−1

ε Transition rate from E to I 0.5 day−1

The reproduction number R0 increases as the average number of contacts between infected/exposed individuals
per unit time increases. On the other hand ε, µ, δ and β are inversely proportional to R0 . This implies that,
increasing them would decrease the R0 even when the effects are not extreme. For instance, the sensitivity index
for R0 with respect to rate of moving from exposed class to infected class, ε is +0.7915 implying increasing (or
decreasing) ε by 10 percent increases (or decreases) R0 by 7.915 percent.

10 Numerical Analysis

Numerical analysis is carried out using parameter values given in Table 2
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Fig. 1.R0 > 1
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Fig. 2.R0 < 1

Fig. 1 shows that when R0 > 1, then the population exposed to the virus will be increasing meaning that the
disease will be persistent in the population. When R0 < 1, as shown in Fig. 2, then the people who have
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Fig. 3.R0 > 1
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Fig. 4.R0 < 1

recovered from the disease will be increasing compared to all other compartments. Fig. 3 shows the case when
there is no second vaccine. The number of infected individuals will significantly increase compared to the other
compartments. Similarly, Fig. 4 shows a case where there is no vaccine, the infected class will be higher than
all the other classes. This clearly shows that vaccination helps the number of infected individuals to decrease
compared to when there is no vaccination.

11 Conclusion

In this paper we formulated and analyzed An SVEIR (Susceptible-Vacinated-Exposed-Infected-Recovered) model
in which individuals can receive first vaccination or second vaccination doses. Global asymptotic stability
demonstrated that the model’s solutions always converge to E∗ whenever R0 > 1, irrespective of the initial
solution. Whenever the reproduction number is bigger than 1, any epidemiological perturbation of the model
caused by the introduction of infections demonstrates that the model solutions will converge to the E∗. This
suggests that the levels of disease transmission can be kept relatively low or managed with few deaths throughout
the peak periods of the recurrence. Sensitivity analysis demonstrated that the average number of encounters
between infected/exposed individuals per unit time increases whenever the reproduction number R0 increases.
Numerical analysis demonstrated that vaccination reduces the number of infected people compared to when
there is no vaccination.
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