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Abstract 

 
This article provides a comprehensive analysis of cyclic codes in GF(2), focusing on their general structure 

and key properties. Cyclic codes are characterized by their generator polynomials, which define their 

structure and play a crucial role in encoding and decoding processes. The cyclical shift property, inherent in 

cyclic codes, facilitates efficient implementation using shift register circuits, making them practical for real-

world applications. The discussion highlights the algebraic properties that distinguish cyclic codes from other 

linear block codes, emphasizing their ability to detect and correct errors. 
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1 Introduction  

 
Cyclic codes are defined by generator polynomials, which play a crucial role in their structure.  Cyclic codes 

possess several algebraic properties that distinguish them from other types of linear block codes. One of the 

fundamental structural characteristics of cyclic codes is their cyclical shift property. The ability of cyclic codes 

to detect and correct errors is a key property. “Cyclic codes exhibit a range of code lengths and dimensions, 

which affect their storage and transmission efficiency. Various performance metrics, such as the code rate, error 

detection and correction capabilities, and decoding complexity, characterize the operational properties of cyclic 

codes. The efficiency and complexity of decoding algorithms, such as syndrome decoding or Berlekamp-

Massey algorithm, are critical properties of cyclic codes” [1]. Cyclic codes find applications in diverse areas, 

including telecommunications, storage systems, and digital communication Quantum computing. 

 

 In 1978, McEliece proposed “the first code-based cryptosystem. This system is a general encryption setting for 

coding theory. Cyclic codes form an important class of linear codes by means of error correcting. They have a 

very interesting algebraic structure” [2]. 

 

 Binary cyclic codes were first introduced by Prange in 1957, and have been the topic of hundreds of papers 

since. A lot of developments have been done on cyclic codes [3].  

 

In a study by Calkavar. S. [4] he investigated the minimal codes words in the binary cyclic codes and obtained 

that: 

 

Let C be an [𝑛, 𝑘]-cyclic code over 𝐹2  with generator polynomial g(x) =  𝑔0 + 𝑔1𝑥 + ⋯ 𝑔𝑛−𝑘𝑥𝑛−𝑘 of degree n-

k. In the [𝑛, 𝑘]-binary cyclic codes C generated by g(x), there are altogether  2𝑘- 2 minimal codewords. He 

concluded that these results can be used for the secret sharing based on the binary cyclic codes. 

 

Petrenko et al. [5], developed an encryption method based on cyclic BCH codes. They used RSA encryption 

algorithm and error correcting codes. Efficient method of constructing code-based cryptosystems was developed 

by Calkavur and Guzeltepe [6]. This approach is based on the One Time Pad cryptosystem. 

 

2 Preliminaries 
 

Definition 2.1: 

 

A k × n generator matrix G obtained by writing the base vectors of the code C as rows of G is called a generator 

matrix of the linear [𝑛, 𝑘]-code C. 

 

Definition 2.2: 

 

 A code C is cyclic if C is a linear code, any cyclic shift of a codeword is also a codeword, i.e whenever 

𝑎0 𝑎1 ⋯ 𝑎𝑛−1 ∈ C, then also 𝑎𝑛−1𝑎0 𝑎1 ⋯ 𝑎𝑛−2 ∈ C. 

 

Theorem 2.1: 

 

A code C in 𝐹𝑞[𝑥] </𝑥𝑛 − 1 > is a cyclic code if and only if C satisfies the following two conditions:a(x), b(x) 

∈ C ↔ a(x)+b(x) ∈ C, a(x)∈ C and r(x) ∈ 𝐹𝑞[𝑥] </𝑥𝑛 − 1 >→ r(x)a(x)∈ C, 

 

Where we denote by 𝐹𝑞[𝑥] </𝑥𝑛 − 1 > the set of polynomials in 𝐹𝑞[𝑥] of degree less than deg 𝑥𝑛 − 1. 

 

 Basics 2.1: 

 

Cyclic code has a generating function. If C = 𝐶0, 𝐶1, . . ., 𝐶𝑛−1 is a codeword, its generating function is defined to 

be the polynomial  

 

C(x) = 𝐶0  + 𝐶1𝑥 +. . . + 𝐶𝑛−1𝑥𝑛−1 
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where x is indeterminate. 

 

 If p and m are integers with m > 0,then “p mod m” denotes the remainder obtained when p is divided by m; 

thus p mod m is the unique integer r such that p - r is divisible by m, and 0 ≤ r ≤ 𝑚 − 1. Similarly, if P(x) and 

Q(x) are polynomials, P(x) mod M(x) denotes the remainder when P(x) is divided by M(x);thus P(x) mod M(x) 

is the unique polynomial R(x) such that P(x) - R(x) is divisible by M(x), and R(x) < deg M(x).  

 

The following Lemma lists the most important properties of the mod operator for polynomials.  

 

Lemma 2.1: 

 

(i) If deg P(x) < deg M(x), then P(x) mod M(x) = P(x). 

(ii) If M(x)| P(x), then P(x) mod M(x) = 0. 

(iii) (P(x) + Q(x)) mod M(x) = P(x) mod M(x) + Q(x) mod M(x). 

(iv) (P(x)Q(x)) mod M(x)=(P(x)(Q(x) mod M(x))) mod M(x). 

(v) If M(x)| N(x), then (P(x) mod N(x)) mod M(x) = P(x) mod M(x). 

 

3 General Structure of Cyclic Codes Over 𝑮𝑭𝟐 
 

a) Cyclic Shift Invariance 

 

Cyclic Shift Invariance is a fundamental and defining property of cyclic codes in coding theory. This property 

implies that if you take any codeword from a cyclic code and cyclically shift its bits (rotate the bits either to the 

left or right), the resulting sequence of bits will also be a valid codeword of the same code. This characteristic is 

particularly useful for applications that involve circular data structures or cyclic interferences, such as data 

storage on circular media. 

 

When a codeword is cyclically shifted to the left, the first bit becomes the last bit of the new codeword. For 

example, a left shift of the codeword 1101 results in 1011. Conversely, in a cyclic right shift, the last bit moves 

to the first position. Thus, a right shift of 1101 yields 1110. 

 

In algebraic terms, cyclic codes can be represented using polynomials over a finite field. Each codeword can be 

associated with a polynomial, where the coefficients of the polynomial correspond to the bits of the codeword. 

 

For a codeword represented by the polynomial C(x) = 𝐶0  + 𝐶1𝑥 +. . . + 𝐶𝑛−1𝑥𝑛−1, a cyclic shift can be modeled 

by multiplying C(x) by x (modulo 𝑥𝑛−1). The modulo operation ensures that the polynomial remains within the 

degree limits suitable for the code's length, n. Given that a cyclic code is defined by a generator polynomial g(x) 

that divides 𝑥𝑛 −1 (where n is the length of the codewords), any codeword C(x) in the code can be expressed as 

C(x) = a(x)g(x) for some polynomial a(x). This multiplication, and the fact that g(x) divides 𝑥𝑛−1, shows that 

the cyclic shift of any codeword is also a multiple of g(x) and therefore remains a valid codeword.  

 

One of the fundamental structural characteristics of cyclic codes is their cyclical shift property. This property 

states that if c(x) is a codeword, then xc(x) is also a codeword. 

 

Theorem 3.1:  

 

If C = (𝐶0,𝐶1, . . . , 𝐶𝑛−1) is a codeword with generating function C(x) = 𝐶0 + 𝐶1𝑥 +. . . + 𝐶𝑛−1𝑥𝑛−1   , then the 

generating function 𝐶𝑅(x) for the right cyclic shift 𝐶𝑅 is given by the formula 𝐶𝑅(x) = xC(x) mod (𝑥𝑛 − 1).  

Proof: Since C(x) = 𝐶0  + 𝐶1𝑥 +. . . + 𝐶𝑛−1𝑥𝑛−1, we have  

 

xC(x) = 𝐶0x + … + 𝐶𝑛−2𝑥𝑛−1 + 𝐶𝑛−1𝑥𝑛   

 

𝐶𝑅(𝑥) =  𝐶𝑛−1 +  𝐶0𝑥 + ⋯ +  𝐶𝑛−2𝑥𝑛−1  . Hence xC(x) − 𝐶𝑅(𝑥) = 𝐶𝑛−1(𝑥𝑛 − 1) . Since deg  𝐶𝑅(𝑥) < 

deg(𝑥𝑛 − 1), and xC(x) − 𝐶𝑅(𝑥) is a multiple of (𝑥𝑛 − 1), the result follows from the definition of the mod 

operation.  

 



 
 

 

 
Munjuri et al.; Asian Res. J. Math., vol. 20, no. 9, pp. 53-60, 2024; Article no.ARJOM.119464 

 

 

 
56 

 

(b) Definition of Codewords as multiple of g(x) 

 

Every codeword c(x)  can be expressed as c(x) = p(x)g(x) where p(x) is a polynomial of degree less than n-r. 

This ensures that c(x) is a multiple of g(x), which guarantees the cyclic property. 

 

Theorem 3.2:  

 

If C is an (n, k) cyclic code, and if C(x) is a codeword in C, then for any polynomial P(x), [P(x)C(x)]n is also a 

codeword in C. 

 

Proof: suppose P(x) = ∑ 𝑃𝑖𝑥
𝑖 .  𝑘

𝑖=0 𝑇ℎ𝑒𝑛   

 

 [𝑃(𝑥)𝐶(𝑥)]𝑛  =  [(∑ 𝑃𝑖𝑥
𝑖𝑘

𝑖=0 )𝐶(𝑥)]
𝑛

  

 

=∑ 𝑃𝑖
𝑘
𝑖=0 [𝑥𝑖𝐶(𝑥)]𝑛 

 

by lemma 1 (iii). But by remarks proceeding the statement of this theorem.[𝑥𝑖𝐶(𝑥)]𝑛 is a codeword for each i, 

and so, since the code is linear, the linear combination  ∑ 𝑃𝑖 [𝑥𝑖𝐶(𝑥)]𝑛   is also a codeword.                                                                     

   
Lemma 3.1: 

 

Suppose that C is a cyclic code with generator polynomial g(x). (a) If g’ (x) is another generator polynomial, 

then g’ (x) = λg(x), for some nonzero element λ ∈ F. (b) If P(x) is a polynomial such that [P(x)]n is a codeword, 

then g(x) divides P(x).  

 

(c) Generator polynomial 

 

At the core cyclic codes lies the generator polynomial. A generator polynomial of degree n generates cyclic 

codewords of length r = 𝑥𝑛 − 1 . Generator polynomial help in defining validity of codewords and their 

structure. 

 

 A closely-related and equally important is the parity- check polynomial for cyclic code, which is denoted by 

h(x), and defined by h(x) = 
𝑥𝑛−1

𝑔(𝑥)
 . 

 

d) Parity- check polynomial 

 

Parity-check polynomial: cyclic codes also have a corresponding parity-check polynomial, denoted as h(x). The 

parity-check polynomial of a cyclic code is derived from its generator polynomial. The parity-check polynomial 

is defined such that it divides evenly into (𝑥𝑛 − 1)  without any remainder, which means that (𝑥𝑛 − 1)  = 

g(x)h(x) for some generator polynomial g(x). 

 

(e) Generator and Parity-Check Matrices  

 

Generator and parity-check matrices are derived from generator and parity-check polynomial respectively. 

 

Corollary 3.1: 

 

If C is an (n, k) cyclic code with generator polynomial g(x) = 𝑔0  +  𝑔1𝑥  + …+𝑔𝑟𝑥𝑟  (with r = n − k), and 

parity-check polynomial h(x) = ℎ0 + ℎ1𝑥 +. . . ℎ𝑘𝑥𝑘 , then the following matrices are generator and parity-check 

matrices for C: 

 

G1 = [

𝑔0 𝑔1 . . .
0
⋮

𝑔0

. . .
𝑔1

. . .
0 . . . . . .

. . . 𝑔𝑟 . . .

. . .

. . .
. . .
. . .

𝑔𝑟

. . .
0 𝑔0 𝑔1

. . . . . . 0
0
. . .

. . .

. . .
0
⋮

. . . . . . 𝑔𝑟

] = [

𝑔(𝑥)

𝑥𝑔(𝑥)
⋮

𝑥𝑘−1𝑔(𝑥)

] 
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𝐻1 = [

ℎ𝑘 ℎ𝑘−1 . . .
0
⋮

ℎ𝑘

. . .
ℎ𝑘−1

. . .
0 . . . . . .

. . . ℎ0 . . .

. . .

. . .
. . .
. . .

ℎ0

. . .
0 ℎ𝑘 ℎ𝑘−1

. . . . . . 0
0
. . .

. . .

. . .
0
⋮

. . . . . . ℎ0

] = [

ℎ(𝑥)

𝑥ℎ(𝑥)
⋮

𝑥𝑟−1ℎ(𝑥)

] 

 

4 General Structure and Properties of Cyclic Codes Over 𝑮𝑭𝟐 
 

a) Error-Correction Capability 

 

 The ability of cyclic codes to detect and correct errors is a key property. This property is influenced by factors 

such as the minimum distance of the code and the design of the generator polynomial. A code is said to correct e 

errors if a decoder and is capable of correcting any pattern of e or fewer errors introduced by the channel. The 

significant of the Hamming distance for a code becomes apparent with the following theorem. 

 

Theorem 4.1:  

 

Let C be an (n, k)-code having distance d = 2e+1.Then C can correct e errors. If used for error detection only, C 

can detect 2e errors.                                                                                         

 

b) Cyclic Redundancy Check (CRC) 

 

 Cyclic codes are often used in CRC schemes for error detection. CRC polynomials are derived from cyclic 

codes and they possess properties such as error-detecting capability in and simplicity in implementations. Cyclic 

codes often exhibit low redundancy, meaning that they require relatively few additional bits to archive a given 

level error of correction capabilities. This efficiency makes cyclic codes attractive for bandwidth limited 

resources-constrained applications. 

 

A transmitted bit can be received in error, due to “noise” on the transmission channel. If we are dealing with 

voice or video data, the occurrence of errors in a small percentage of bits is quite tolerable, but in many other 

cases it is crucial that all bits be received intact. There are many methods which have been developed to detect 

errors, applied at different levels of the seven layer model. Of course, no method can detect all errors, but a 

number of methods in use today are amazingly effective. The Cyclic Redundancy Checking (CRC) appends a 

few (typically 16 or 32) bits to the end of the bit string for a message and sends out the extended string. The 

receiver then performs a computation which would yield 0 if no bits of the message had been in error; if the 

result is not 0, then the receiver knows that there has been an error in one or more bits. (But if the result is 0, this 

does not necessarily mean there was no error) [7]. 

 

(c) Modular Arithmetic implementation. 

 

 Cyclic codes can be implemented using modular arithmetic operation, particularly in binary fields 𝐺𝐹2. This 

implementation simplifies hardware design and reduces computational complexity, making cyclic codes suitable 

for hardware-based applications. The core of modular arithmetic lies in the concept of modulo operations. 

Modulo, often denoted as a mod m or a (mod m), is the remainder when a is divided by m. This operation plays 

a pivotal role in defining congruence and exploring the cyclic nature of modular arithmetic. In its essence, 

modulo arithmetic is about working with remainders. The expressions a ≡ b (mod m) signifies that a and b have 

the same remainders when divided by m. This relation, called congruence, forms the foundation of modular 

arithmetic. One of the fascinating aspects of modulo arithmetic is its ability to create cyclic patterns. For 

instance, consider 𝑛2 mod 4 for various values of n. The results exhibit a cyclic pattern 0, 1, 0, 1, …, revealing 

the periodic nature of modulo operations [8]. 

 

(d) Encoding and decoding 

 

Encoding in cyclic codes is performed by dividing the message polynomial by generator polynomial. The 

message polynomial m(x) is multiplied by 𝑥𝑛−𝑘 (where n-k is the number of redundancy bits) to make room for 
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the code polynomial. The remainder of the division, denoted as r(x), represents the redundancy bits of the 

codeword. The encoded codeword is obtained by appending r(x) to 𝑥𝑛−𝑘m(x). 

 

Decoding in cyclic codes involves finding the error locator polynomial and error evaluator polynomial. The 

syndromes of the received polynomial are computed and used to find the error locator polynomial using the 

Berlekamp-Massey algorithm or other methods. Once the error locator polynomial is found, the error locations 

can be determined, and the error values can be corrected accordingly [9]. 

 

(e) Closure under addition and multiplication 

 

A Galois field, denoted as GF(q), is a finite field with q elements, where q is a prime power, i.e., q  = 𝑝𝑚 for 

some prime number p and positive integer m. The field GF(q) is often referred to as a Galois field of order q or a 

finite field of order q. In a Galois field GF(q), addition and multiplication are performed modulo q. This means 

that the result of any addition or multiplication operation is reduced modulo q to ensure that the result remains 

within the field. Addition and multiplication operations in GF(q) satisfy closure, associativity, and 

commutativity properties. There exists an additive identity (zero) and a multiplicative identity (one) in GF(q). 

Every non-zero element in GF(q) has an additive inverse and a multiplicative inverse. The characteristic of a 

Galois field GF(q) is the smallest positive integer p such that p multiplied by any element of the field yields the 

additive identity [10].                                                            

 

(f) Burst Error Correction 

 

On many channels of practical importance, errors, when they occur, tend to occur in bursts. Physically, a burst 

of errors occurs when for some reason the channel noise severity increases for a brief time, and then returns to 

normal. Cyclic codes are particularly effective at correcting burst errors, where consecutive bits in a codeword 

are corrupted. The cyclic shifting property allows the code to detect and correct burst errors efficiently, making 

cyclic codes suitable for applications with bursty noise. If a codeword C is transmitted, and is received as R = C 

+ E, then the error vector E is called a burst of length b if the nonzero components of E are confined to b 

consecutive components. 

 

(g) Minimum Distance 

 

The minimum distance of a cyclic code is the smallest Hamming distance between any pair of distinct 

codewords in the code. It determines the error-detecting and error-correcting capabilities of the code. Cyclic 

codes with larger minimum distances can correct a greater number of errors. A code with minimum distance d 

can detect up to d−1 errors in a codeword. This is because if fewer than d errors are introduced into a codeword, 

the resulting word is still closer to the original codeword than to any other codeword in the code. 

 

A code with minimum distance d can correct up to (d−1)/2 errors. This capability arises because, with (d−1)/2 

errors, the erroneous codeword is closer to the original codeword than to any other codeword. Therefore, a 

decoding process can correctly infer the original codeword by identifying the nearest valid codeword. A binary 

Hamming code of length 2𝑚  − 1 is any linear code whose parity-check matrix has as columns the 2𝑚  − 1 

nonzero binary vectors of length m, arranged in any order. For example, the following parity-check matrix 

defines a (7, 4) Hamming code: 

 

H = [
0 1 1
1 0 1
1 1 0

     
1 1 0
1 0 1
1 0 0

     
0
0
1

] 

 

There are of course (2𝑚 −1)! ways to order these columns, and although any one of these orderings produces a 

perfect single-error correcting code, some orderings are better than others from an implementational standpoint. 

 

(h) Parallelization  

 

Cyclic codes can be parallel efficiently allowing for concurrent processing of multiple codewords. This property 

enables high-throughput communication systems and can improve overall system performance. 
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5 Discussion 
 

The structure and properties of cyclic codes in 𝐺𝐹2 play a vital role in cryptography, offering several advantages 

and capabilities that are essential for secure communication and data protection. The generator polynomial g(x) 

is the cornerstone of cyclic codes. It helped in defining validity of codewords and their structure. In encryption 

we used g(x) to ensure that each codeword are uniquely represented, providing a structured way to encode 

messages. 

 

Having a well defined g(x) allowed for predictable transformations, which was essential for designing secure 

encryption algorithms. Cyclic invariance ensured error resilience and simplified the hardware implementation of 

coding systems, allowing for efficient encryption and decryption process using shift registers. The parity check 

polynomial ensured that the received codeword has not been altered, providing a means to verify the integrity of 

the encrypted message. The use of modular arithmetic ensured that the encoded data fits within a specified 

range, preventing overflow and maintaining the integrity of encrypted messages. Parity check assist in detection 

of errors by checking if the received codeword is divisible by generator polynomial. The length of the cyclic 

code determined the size of the codewords and affects the overall efficiency and performance of the encryption 

and decryption processes. Longer codes provide stronger error detection and correction capabilities. 

 

The closure properties of cyclic codes under addition and multiplication has ensured that encoded messages 

remain within the code space, preserving the security and integrity of the communication channel. CRC is a type 

of cyclic code used for error detection in data transmission. It generates a checksum based on the data content, 

which is appended to the message for error detection at the receiver's end. 

 

6 Conclusion 
 

We presented the unique structures and properties of cyclic codes over 𝐺𝐹2 . They play a crucial role in 

cryptography, providing essential mechanisms for secure communication and data protection. Several key 

properties stand out as particularly important in cryptographic applications. However, these structures and 

properties can be applied in data encryption and decryption of data in further studies. 
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