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Abstract 

 
Vector-valued functions of new fractional Brownian motions are considered. The concept of stochastic 

integrals are generalized. Formulas of Ito are also generalized. Some stochastic parabolic systems driven by 

new fractional Brownian motions are studied. Uniqueness and existence theorems are proved. These findings 

have potential applications in fields such as financial mathematics, where modeling with fractional Brownian 

motion is relevant.  
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Mathematics Subject Classifications: 35A05, 47D60, 47D62, 77D09, 60H05, 60H10, 60G18 
 

1 Introduction 
 

Let (𝛀, 𝕬, 𝑷)  be a probability space, ( 𝛀 𝒊𝒔 𝒂 𝒔𝒆𝒕, 𝕬 𝒊𝒔 𝒂 𝝈 − 𝒂𝒍𝒈𝒆𝒃𝒓𝒂 𝒐𝒇 𝒔𝒖𝒃𝒔𝒆𝒕𝒔 𝒐𝒇 𝜴, 𝑷: 𝕬 →
[𝟎. 𝟏] 𝒊𝒔 𝒂 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒎𝒆𝒂𝒔𝒖𝒓𝒆).  
 

According to our previous results, [1,2], we say that a random variable 𝑿: 𝜴 → 𝑹 has a fractional Gaussian (or 

fractional normal) distribution, if 𝑿 has a probability density function 𝒇 defined by: 

 

𝒇(𝒙) = ∫
𝟏

√𝟐𝝅𝒕𝜶𝜽
 𝜻𝜶(𝜽)

∞

𝟎
 𝒆𝒙𝒑 (−

−(𝒙−𝒎)𝟐

𝟐𝒕𝜶𝜽
)𝒅𝜽 . 

 

Where 𝑹  is the set of all real numbers, 𝟎 < 𝛂 ≤ 𝜻𝜶(𝜽)  و𝟏  is the stable probability density function. The 

properties of the function 𝜻𝜶(𝜽) can be founded in [2].  It is clear that 𝑿 has mean 𝒎 and variance  
𝒕𝜶

𝚪(𝜶+𝟏)
 , 

where 𝚪(. ) 𝒊𝒔 𝒕𝒉𝒆 𝒈𝒂𝒎𝒎𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏. In this case we write  𝑿 is 𝑵𝜶(𝒎,
𝒕𝜶

𝚪(𝜶+𝟏)
)  (see [2-5]). 

 

Again according to our previous results, [1], we call a real valued stochastic process 𝑾𝜶(. )  a fractional 

Brownian motion if the following conditions are satisfied: 

 

i- 𝑾∝(𝟎) = 𝟎 

ii- 𝑾𝜶(𝒕) −  𝒘𝜶(𝒔) 𝒊𝒔  𝑵𝜶(𝟎,
𝒕𝜶−𝒔𝜶

𝚪(𝛂+𝟏)
 ), for all 𝟎 < 𝒔 < 𝒕, 

iii- for all times  𝟎 < 𝒕𝟏 < ⋯ < 𝒕𝒏  the random variables 𝑾𝜶(𝒕𝟏) , 𝑾𝜶(𝒕𝟐) −  𝑾𝜶(𝒕𝟏) , … , 𝑾𝜶(𝒕𝒏) −
 𝑾𝜶(𝒕𝒏−𝟏) are independent, (with independent increments). 

 

It is easy to see that: 
 

𝑬(𝑾𝜶(𝒕)) = 𝟎,  𝑬(𝑾𝜶
𝟐(𝒕)) =  

𝒕𝜶

𝚪(𝜶+𝟏)
 ,  𝑬(𝑾𝜶(𝒕)𝑾𝜶(𝒔)) =  

𝒔𝜶

𝚪(𝜶+𝟏)
 , 𝒔 ≤ 𝒕. 

 

Where  𝑬(𝑿) is the expectation of 𝑿. 
 

Let  𝓛𝟐(𝟎, 𝑻) be the space of all real-valued, progressively measurable stochastic processes G(.) such that 

𝑬(∫ 𝑮𝟐𝒅𝒕)  < ∞
𝑻

𝟎
 . 

 

The fractional stochastic integral  ∫ 𝑮𝒅𝑾𝜶
𝑻

𝟎
 is defined in [1]. 

 

It is proved that: 
 

∫ 𝑾𝜶 𝒅𝑾𝜶 =  
𝑾𝜶

𝟐 (𝑻)

𝟐

𝑻

𝟎
− 

𝑻𝜶

𝟐𝚪(𝜶+𝟏)
 , 

𝒅(𝒕𝑾𝜶) = 𝒕𝒅𝑾𝜶 + 𝑾𝜶𝒅𝒕, 

∫ (𝒂𝑮 + 𝒃𝑯)𝒅𝑾𝜶 = 𝒂 ∫ 𝑮𝒅𝑾𝜶 + 𝒃 ∫ 𝑯𝒅𝑾𝜶
𝑻

𝟎

𝑻

𝟎

𝑻

𝟎
 , 

𝑬(∫ 𝑮𝒅𝑾𝜶) = 𝟎
𝑻

𝟎
. 

  

𝑬(  ∫ 𝑮𝒅𝑾𝜶 ∫ 𝑯𝒅𝑾𝜶) =  
𝟏

𝜞(𝜶)
𝑬(∫ 𝒕𝜶−𝟏𝑮𝑯𝒅𝒕

𝑻

𝟎

𝑻

𝟎

𝑻

𝟎
) ,  

 

for all 𝑯, 𝑮𝝐 𝓛𝟐(𝟎, 𝑻)  and all real numbers 𝒂, 𝒃. 
 

2 Vectors of Fractional Brownian Motions 
 

Let 𝓛𝟏 (0, 𝑻)  be the space of all real-valued, progressively measurable stochastic processes 𝑭  such that 

 𝑬[∫ |𝑭|𝒅𝒕]  < ∞
𝑻

𝟎
. 
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Suppose that 𝑾𝜶(. ) = (𝑾𝜶
𝟏(. ), … , 𝑾𝜶

𝒎(. ))  is an m-dimensional fractional Brownian motion. We say that 

𝒁𝒏𝒙𝒎 -valued stochastic process 𝑮 = (𝑮𝒊𝒋)  belongs to 𝓛𝒏𝒙𝒎
𝟐 (𝟎, 𝑻)  if 𝑮𝒊𝒋𝝐𝓛𝟐(𝟎, 𝑻) . An 𝑹𝒏 -valued stochastic 

process 𝑭(. ) = (𝑭𝟏(. ), … , 𝑭𝒏(. )) belongs to 𝓛𝒏
𝟏(𝟎, 𝑻) if 𝑭𝒊(. ) 𝝐 𝓛𝟏(𝟎, 𝑻), 𝒊 = 𝟏, … , 𝒏, 𝒋 = 𝟏, … , 𝒎. 

 

If 𝑮  belongs to  𝓛𝒏𝒙𝒎
𝟐 (𝟎, 𝑻)  , then ∫ 𝑮𝒅𝑾𝜶

𝑻

𝟎
 is an 𝑹𝒏 -valued random variable, whose 𝒊 − 𝒕𝒉  component is 

∑ ∫ 𝑮𝒊𝒋𝒅𝑾∝
𝒋𝑻

𝟎
 ,𝒎

𝒋=𝟏  𝒊 = 𝟏, … 𝒏. 

 

If 𝑮 ∈  𝓛𝒏𝒙𝒎
𝟐 (𝟎, 𝑻) ,then by using our results in [1], we can write: 

 

E[0TGdW∝]=0,   E[|0TGdW∝|2]=E[0Tt∝−1Γ(α)G2dt, where |G|2=j=1mi=1n|Gij|2.    

  

If 𝑿(. ) = (𝑿𝟏(. ), … , 𝑿𝒏(. )) is an 𝑹𝒏 −valued stochastic process such that: 

 

𝑿(𝒃) − 𝑿(𝒂) = ∫ 𝑭(𝒕)𝒅𝒕 + ∫ 𝑮(𝒕)𝒅𝑾𝜶(𝒕),

𝒃

𝒂

𝒃

𝒂

 

 

For some F ∈ 𝓛𝒏
𝟏(𝟎, 𝑻) , 𝑮 ∈ 𝓛𝒏𝒙𝒎

𝟐 (𝟎, 𝑻) , we say that  𝑿(. ) has the fractional stochastic differential: 

 

𝒅𝑿 = 𝑭𝒅𝒕 + 𝑮𝒅𝑾𝜶. 
 

This means that: 

 

𝒅𝑿𝒊 = 𝑭𝒊𝒅𝒕 + ∑ 𝑮𝒊𝒋𝒅𝑾𝜶
𝒋

 ,   𝒊 = 𝟏, … , 𝒏.
𝒎

𝒋=𝟏
 

 

Let 𝒖: 𝑹𝒏𝑿[𝟎, 𝑻] → 𝑹 be continuous, with continuous partial derivatives 
𝝏𝒖

𝝏𝒕
,

𝝏𝒖

𝝏𝒙𝒊
,

𝝏𝟐𝒖

𝝏𝒙𝒊𝝏𝒙𝒋
, 𝒊, 𝒋 = 𝟏, … , 𝒏 , then a 

direct generalization of our formula in [1] is given by: 

 

𝒅𝒖(𝑿(𝒕), 𝒕) =
𝝏𝒖

𝝏𝒕
𝒅𝒕 + ∑

𝝏𝒖

𝝏𝒙𝒊
𝒅𝑿𝒊 +

𝒕𝜶−𝟏

𝟐𝚪(𝜶)
∑

𝝏𝟐𝒖

𝝏𝒙𝒊𝝏𝒙𝒋
∑ 𝑮𝒊𝓵𝑮𝒋𝓵𝒎

𝓵=𝟏
𝒏
𝒊,𝒋=𝟏

𝒏
𝒊=𝟏  , 

 

Where the argument of the partial derivatives of 𝒖 𝒊𝒔 (𝑿(𝒕), 𝒕). (𝑹 is the set of all real numbers, 𝑹𝒏  is the 

𝒏 −dimensional Euclidean space), see [3-8]. 

 

3 New fractional Stochastic Parabolic Systems 
 

Let 𝑾∝(. ) be an k-dimensional fractional Brownian. We will henceforth take: 

 

𝓕(𝒕) ≔ 𝕬(𝑾𝜶(𝒔), 𝟎 ≤ 𝒔 ≤ 𝒕), 
 

The 𝝈 − 𝒂𝒍𝒈𝒆𝒃𝒓𝒂 generated by the history of the fractional Wiener process up to (and including time t).  

Consider the following fractional stochastic differential system 

 

𝒅𝒖(𝒙, 𝒕) = [∑ 𝑨𝒒(𝒙, 𝒕)𝑫𝒒𝒖(𝒙, 𝒕) + 𝒇(𝒙, 𝒕, 𝒖]𝒅𝒕 + 𝒈(𝒙, 𝒕, 𝒖)𝒅𝑾∝(𝒕)|𝒒|≤𝟐𝒎 , 𝒕 > 𝟎,                            (3.1) 

  

With the initial condition 

 

𝒖(𝒙, 𝟎) = 𝝋(𝒙),                                                                                                                                     (3.2)  

 

Original%20Manuscript_AJPAS_121347(3).docx
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(where 𝒙 ∈ 𝑹𝒓 , {𝑨𝒒  , |𝒒| ≤ 𝟐𝒎} is a family of square matrices of order k ,whose elements are sufficiently 

smooth functions on 𝑹𝒓𝒙[𝟎, 𝑻], 𝒒 = (𝒒𝟏, … 𝒒𝒓) is a multi-index, |𝒒| = 𝒒𝟏 + ⋯ + 𝒒𝒓,  𝑫𝒒 = 𝑫𝟏
𝒒𝟏 , … , 𝑫𝒓

𝒒𝒓  , 𝑫𝒋 =
𝝏

𝝏𝒙𝒋
 , 𝒋 = 𝟏, … , 𝒓, 𝒇 , 𝝋 ∈ 𝑹𝒌 , 𝒈 is a square matrix of order k [9-13].   

The elements of 𝝋 are continuous bounded deterministic functions on 𝑹𝒓. 
 

Let us suppose that the real parts of the λ − 𝒓𝒐𝒐𝒕𝒔 of the equation: 

 

𝑫𝒆𝒕[(−𝟏)𝒎 ∑ 𝑨𝒒(𝒙, 𝒕)𝝈𝒒 − 𝝀𝑰]
|𝒒|=𝟐𝒎

= 𝟎 

 

Satisfy the inequality: 

 

𝑹𝒆𝛌(𝒙, 𝒕, 𝝈) ≤ −𝜹|𝝈|𝟐𝒎 , 𝛔 ∈ 𝑹𝒓 , |𝝈|𝟐 = 𝝈𝟏
𝟐 + ⋯ + 𝝈𝒓

𝟐, 𝝈𝒒 = 𝝈𝟏
𝒒𝟏 … 𝝈𝒓

𝒒𝒓  , 𝜹 𝒊𝒔 𝒂 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆Constant𝑛𝑠𝑡𝑎𝑛𝑡 and 

I is the unit matrix of order n. 

 

Following Edelman [14] we suppose that the elements of the coefficients  𝑨𝒒, |𝒒| = 𝟐𝒎, are continuous in 𝒕 ∈

[𝟎, 𝑻], moreover , the continuity in 𝒕 is uniform with respect to 𝒙 ∈ 𝑹𝒓. It is supposed also that these elements 

are deterministic  bounded on 𝑹𝒓𝒙[𝟎, 𝑻] and satisfy the Holder condition with respect to x. 

 

Under these conditions there exists for the system: 

 
𝝏𝒗

𝝏𝒕
= ∑ 𝑨𝒒(𝒙, 𝒕)𝒗,|𝒒|=𝟐𝒎  

 

a fundamental solution matrix 𝑸(𝒙, 𝒚, 𝒕, 𝒔) satisfies the following conditions: 

 
𝝏𝑸

𝝏𝒕
, 𝑫𝒒𝑸 ∈ 𝑪(𝑹𝟐𝒓𝒙[𝟎, 𝑻]𝒙[𝟎, 𝑻]), where 𝑪(𝑺) is the set of all matrices with continuous bounded element on a 

region 𝑺, also 𝑮 satisfies the following inequality: 

 

|𝑫𝒒𝑸(𝒙, 𝒕, 𝒚, 𝒔)| ≤
𝑨𝟏

(𝒕−𝒔)𝜷 𝒆𝒙𝒑𝚲, 𝒕 > 𝒔, 𝚲 =
−𝑨𝟐|𝒙−𝒚|𝟐𝒎

𝒕−𝒔
, |𝒙|𝟐 = 𝒙𝟏

𝟐 + ⋯ + 𝒙𝒓
𝟐 , 𝑨𝟏, 𝑨𝟐  are positive constants , 𝜷 =

𝟏

𝟐
(𝒓 + |𝒒|), |𝒒| ≤ 𝟐𝒎 , |𝑸|𝟐 = ∑ (𝜼𝒊,𝒋)

𝟐,   𝑮 = (𝜼𝒊,𝒋),𝒌
𝒊,𝒋=𝟏  [14]. 

 

Now the problem (3.1), (3.2) can be written in the form: 

 

𝒖(𝒙, 𝒕) = ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝟎)𝝋(𝒚)𝒅𝒚

 

𝑹𝒓

+ ∫ ∫

 

𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒇(𝒚, 𝒔, 𝒖(𝒚. 𝒔))𝒅𝒚𝒅𝒔 + ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒈(𝒚, 𝒔, 𝒖(𝒚, 𝒔))𝒅𝒚𝒅𝑾𝜶(𝒔)

 

𝑹𝒓

𝒕

𝟎

 

𝑹𝒓

𝒕

𝟎

                                  (𝟑. 𝟑) 

 

 

We say that an 𝑹𝒌 –valued stochastic process 𝒖(. , . ) is a solution of the fractional stochastic integral system 

(3.3) for 𝒙 ∈ 𝑹𝒓  𝟎 ≤ 𝒕 ≤ 𝑻 ,  provided 

 

(i) 𝒖(. , . ) is progressively measurable with respect to 𝓕(. ) for every fixed 𝒙𝝐𝑹𝒓  

(ii) (𝒙, 𝒕, 𝒖) ∈ 𝓛𝒌
𝟏(𝟎, 𝑻) , for every fixed  𝒙 ∈ 𝑹𝒓 

(iii) 𝒈(𝒙, 𝒕, 𝒖) ∈ 𝓛𝒌𝒙𝒌
𝟐 (𝟎, 𝑻) , for every fixed  𝒙𝝐𝑹𝒓 

 

and  𝒖(𝒙, 𝒕) satisfies equation (3.3) 

 

Theorem. Suppose that 𝒇: 𝑹𝒓𝒙[𝟎, 𝑻]𝒙𝑹𝒌 → 𝑹𝒌  and 𝒈: 𝑹𝒓𝒙[𝟎, 𝑻]𝒙𝑹𝒌 → 𝒁𝒌𝒙𝒌  are continuous and satisfy the 

following conditions: 

 

(i)   |𝒇(𝒙, 𝒕, 𝒖) − 𝒇(𝒙, 𝒕, 𝒗)| ≤ 𝑳|𝒖 − 𝒗| 
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       |𝒈(𝒙, 𝒕, 𝒖) − 𝒈(𝒙, 𝒕, 𝒗)| ≤ 𝑳|𝒖 − 𝒗|,  
 

For all 𝟎 ≤ 𝒕 ≤ 𝑻, 𝒙𝝐𝑹𝒓, 𝒖, 𝒗 ∈ 𝑹𝒌 

 

(ii)  |𝒇(𝒙, 𝒕, 𝒖)| ≤ 𝑳(𝟏 + |𝒖|) 

       |𝒈(𝒙, 𝒕, 𝒖)| ≤ 𝑳(𝟏 + |𝒖|) 

 

for all 𝟎 ≤ 𝒕 ≤ 𝑻, 𝒙 ∈ 𝑹𝒓, 𝒖 ∈ 𝑹𝒌 

 

for some positive constant 𝑳 

 

Then there exists a unique stochastic solution 𝒖 ∈ 𝓛𝒌
𝟐(𝟎, 𝑻), for every 𝒙𝝐𝑹𝒓, of the fractional stochastic integral 

equation (3.3), (by unique solution , we mean that if 𝒖, 𝒖∗ ∈ 𝓛𝒌
𝟐(𝟎, 𝑻), for every 𝒙 ∈ 𝑹𝒓, with continuous sample 

paths almost surely , and both solves equation (3.3), then 𝑷(𝒖(𝒙, 𝒕) = 𝒖∗(𝒙, 𝒕), 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ 𝑹𝒓, 𝟎 ≤ 𝒕 ≤ 𝑻) =
𝟏. 

Notice that hypothesis (i) says that 𝒇 𝒂𝒏𝒅 𝒈 are uniformly Lipschitz continuous in the variable 𝒖. Notice also 

that hypothesis (ii) actually follows from (i). 

 

Proof. Let nus prove now the uniqueness. Suppose that 𝒖 𝒂𝒏𝒅 𝒗 are solutions of (3.3). Then for all 𝒙 ∈ 𝑹𝒓 , 𝟎 ≤
𝒕 ≤ 𝑻, 
 

𝒖(𝒙, 𝒕) − 𝒗(𝒙, 𝒕) = ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)[𝒇(𝒚, 𝒔, 𝒖(𝒚, 𝒔)) − 𝒇(𝒚, 𝒔, 𝒗(𝒚, 𝒔)]𝒅𝒚𝒅𝒔 + ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)[𝒈(𝒚, 𝒔, 𝒖(𝒚, 𝒔)) − 𝒈(𝒚, 𝒔, 𝒗(𝒚, 𝒔)]𝒅𝒚𝒅𝑾𝜶(𝒔)

 

𝑹𝒓

𝒕

𝟎

 

𝑹𝒓

𝒕

𝟎

. 

 

It is easy to get the following estimation: 

 

𝑬{|𝒖(𝒙, 𝒕) − 𝒗(𝒙, 𝒕)|𝟐} ≤ 𝟐𝑬 {|∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)[𝒇(𝒚, 𝒔, 𝒖(𝒚, 𝒔)) − 𝒇(𝒚, 𝒔, 𝒗((𝒚, 𝒔))]
 

𝑹𝒓

𝒕

𝟎
𝒅𝒚𝒅𝒔|

𝟐
} +

𝟐𝑬 { | ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)[𝒈(𝒚, 𝒔, 𝒖(𝒚, 𝒔)) − 𝒈(𝒚, 𝒔, 𝒗(𝒚, 𝒔))]𝒅𝒚𝒅𝑾∝(𝒔)|
 

𝑹𝒓

𝒕

𝟎

𝟐
}. 

 

According to our results in [1] and the properties of the fundamental matrix solution 𝑸  we get by using 

Schwartz inequality and the Lipchitz condition (i) the following estimation:  

  

𝑺𝒖𝒑𝒙𝝐𝑹𝒓𝑬{|𝒖 − 𝒗|𝟐} ≤ 𝑲 ∫ 𝑺𝒖𝒑𝒙∈𝑹𝒓𝑬{|𝒖 − 𝒗|𝟐}𝒅𝒔 + 𝑲 ∫
𝒔𝜶−𝟏

𝚪(𝜶)
𝑺𝒖𝒑𝒙𝝐𝑹𝒓𝑬{|𝒖 − 𝒗|𝟐

𝒕

𝟎

}𝒅𝒔
𝒕

𝟎

, 

 

for some constant 𝑲 > 𝟎 and all 𝟎 ≤ 𝒕 ≤ 𝑻. 
 

Consequently, 

 

𝑺𝒖𝒑𝒙∈𝑹𝒓𝑬{|𝒖 − 𝒗|𝟐} ≤ 𝑲∗ ∫
𝒔𝜶−𝟏

𝚪(𝜶)
𝑺𝒖𝒑𝒙𝝐𝑹𝒓𝑬{|𝒖 − 𝒗|𝟐}𝒅𝒔,

𝒕

𝟎

 

 

For some constant 𝑲∗ > 𝟎 and all 𝟎 ≤ 𝒕 ≤ 𝑻. 
 

Thus according to fractional 𝑮𝒓𝒐𝒏𝒘𝒂𝒍𝒍,𝒍𝒆𝒎𝒎𝒂, we get 𝒖(𝒙, 𝒕) = 𝒗(𝒙, 𝒕) almost surely for all 𝒙 ∈ 𝑹𝒓, 𝟎 ≤
𝒕 ≤ 𝑻. As 𝒖 𝒂𝒏𝒅 𝒗 have continuous sample paths almost surely, 

 

𝑷(|𝒖(𝒙, 𝒕) − 𝒗(𝒙, 𝒕)| > 𝟎, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ 𝑹𝒓, 𝟎 ≤ 𝒕 ≤ 𝑻) = 𝟎. 
 

To prove the existence, we define a sequence {𝒖𝒏(𝒙, 𝒕)} by: 

 

𝒖𝒏+𝟏(𝒙, 𝒕) = ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝟎)𝝋(𝒚)𝒅𝒚 +
 

𝑹𝒓 ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒇(𝒚, 𝒔, 𝒖𝒏(𝒚, 𝒔)𝒅𝒚𝒅𝒔 + ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒈(𝒚, 𝒔, 𝒖𝒏(𝒚, 𝒔)𝒅𝒚𝒅𝑾𝜶(𝒔)
 

𝑹𝒓

𝒕

𝟎

 

𝑹𝒓

𝒕

𝟎
, 

 

for 𝒏 = 𝟎, 𝟏, … 𝒂𝒏𝒅 𝒙 ∈ 𝑹𝒓, 𝟎 ≤ 𝒕 ≤ 𝑻, 𝒖𝟎(𝒙, 𝒕) = 𝝋(𝒙).  Define also 



 
 

 

 
El-Borai and El-Nadi; Asian J. Prob. Stat., vol. 26, no. 9, pp. 1-8, 2024; Article no.AJPAS.121347 

 

 

 
6 

 

 

𝒅𝒏(𝒙, 𝒕) = 𝑬{|𝒖𝒏+𝟏(𝒙, 𝒕) − 𝒖𝒏(𝒙, 𝒕)|𝟐}. 
 

For 𝒏 = 𝟎, we have, 

 

𝒅𝟎(𝒙, 𝒕) ≤ 𝟐𝑬 { | ∫ ∫ 𝑳|𝑸(𝒙, 𝒚, 𝒕, 𝒔)|(𝟏 + |𝝋(𝒚)|𝒅𝒚𝒅𝒔
 

𝑹𝒓

𝒕

𝟎
|𝟐} + 𝟐𝑬{| ∫

𝒔𝜶−𝟏

𝚪(𝜶)
[∫

𝑹𝒓

|𝑸(𝒙, 𝒚, 𝒕, 𝒔)||𝒈(𝒚, 𝒔, 𝝋(𝒚))|𝒅𝒚]𝟐𝒅𝒔.
𝒕

𝟎

 

 

Thus we can find a constant 𝑲 > 𝟎 such that: 

 

𝒅𝟎(𝒙, 𝒕) ≤ 𝑲
𝒕𝜶

𝚪(𝜶+𝟏)
. 

 

It is easy to get by induction 

 

𝒅𝒏(𝒙, 𝒕) ≤ 𝑲𝒏+𝟏
𝒕(𝒏+𝟏)𝜶

𝒏! (𝚪(𝜶 + 𝟏))
𝒏+𝟏

. 

 

for some constant 𝑲 > 𝟎. 
 

According to the Martingale inequality, 

 

𝑬[𝑴𝒂𝒙𝟎≤𝒕≤𝑻|𝒖(𝒙, 𝒕)|𝒑] ≤ (
𝒑

𝒑 − 𝟏
)

𝒑

𝑬[|𝒖(𝒙, 𝑻)|𝒑], 

  

we get, 

 

   𝑬[𝑴𝒂𝒙𝟎≤𝒕≤𝑻|𝒖𝒏+𝟏(𝒙, 𝒕) − 𝒖𝒏(𝒙. 𝒕)|𝟐] ≤ 𝑲𝒏+𝟏 𝑻(𝒏+𝟏)𝜶

𝒏!(𝚪(𝜶+𝟏))
𝒏+𝟏. 

 

Applying Borel-Cantelli lemma, we deduce that for every 𝝎 ∈ 𝛀  
 

𝒖𝒏(𝒙, 𝒕) = 𝒖𝟎(𝒙, 𝒕) + ∑[𝒖𝒋+𝟏(𝒙, 𝒕) − 𝒖𝒋(𝒙, 𝒕)

𝒏

𝒋=𝟎

 

 

Converges uniformly on 𝑹𝒓𝒙[𝟎, 𝑻] to a stochastic process 𝒖(𝒙, 𝒕). 
 

We pass to limits in the definition of 𝒖𝒏(𝒙, 𝒕), to prove 
 

𝒖(𝒙, 𝒕) = ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝟎)𝝋(𝒚)𝒅𝒚 + ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒇(𝒚, 𝒔, 𝒖(𝒚, 𝒔))𝒅𝒚𝒅𝒔 + ∫ ∫ 𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒈(𝒚, 𝒔, 𝒖(𝒚, 𝒔)𝒅𝒚𝒅𝑾𝜶(𝒔),
 

𝑹𝒓

𝒕

𝟎

 

𝑹𝒓

𝒕

𝟎

 

𝑹𝒓   

 

For all 𝒙𝝐𝑹𝒓, 𝟎 ≤ 𝒕 ≤ 𝑻. 
 

Let us prove now that the considered stochastic solution  𝒖 is an element of 𝓛𝒌
𝟐(𝟎, 𝑻). 

We can find a constant 𝑲 > 𝟎 such that:  
 

𝑬[|𝒖𝒏+𝟏(𝒙, 𝒕)|𝟐] ≤ 𝑲 + 𝑲𝑬{∫ [| ∫ |𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒇(𝒚, 𝒔, 𝒖𝒏(𝒚, 𝒔))|𝒅𝒚|]
 

𝑹𝒓

𝟐

𝒅𝒔} + 𝑲𝑬{∫
𝒔𝜶−𝟏

𝚪(𝜶)
[| ∫ |𝑸(𝒙, 𝒚, 𝒕, 𝒔)𝒈(𝒖𝒏(𝒚, 𝒔))|𝒅𝒚|

 

𝑹𝒓

]𝟐𝒅𝒔}.
𝒕

𝟎

𝒕

𝟎

 

 

Using condition (ii) and the properties of 𝑸(𝒙, 𝒚, 𝒕, 𝒔), we get by induction: 
 

𝑬{|𝒖𝒏+𝟏(𝒙, 𝒕)|𝟐} ≤ 𝑲𝟏𝒆𝑲𝟐𝒕𝜶
, 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒔 𝑲𝟏, 𝑲𝟐, 

 

For all 𝒙 ∈ 𝑹𝒓, 𝟎 ≤ 𝒕 ≤ 𝑻. 𝑻𝒂𝒌𝒊𝒏𝒈 𝒕𝒉𝒆 𝒍𝒊𝒎𝒊𝒕 𝒂𝒔 𝒏 𝒕𝒆𝒏𝒅𝒔 𝒕𝒐 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒚 𝒘𝒆 𝒈𝒆𝒕 the required result. 
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4 Conclusion 
 

New fractional Brownian motion is constructed. Some results of Ito about vectors of fractional Brownian 

motion are generalized. Parabolic systems driven by new vectors of fractional Brownian motion are studied, see 

[8-16]. 
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