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Abstract

In this paper, some inequalities involving the extension of k-gamma function are presented.
Consequently, some previous results are recovered as particular cases of the present results.
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1 Introduction

In recent years, some extensions of the well known Euler’s classical gamma function have been
considered by several authors. Also many properties and inequalities concerning these functions
have been examined; see for example, [1], [2], [3], [4], [5], [6] and [7]. The Chaudhry-Zubair extension
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of the gamma function is defined as [8]

Γb(z) =

∫ ∞

0

tz−1e−t− b
t dt, Re(b) > 0, Re(z) > 0, (1.1)

and satisfies the recursion relation and reflection formula respectively as

Γb(z + 1) = zΓb(z) + bΓb(z − 1),
Γb(−z) = b−zΓb(z).

In the case b = 0, The Chaudhry-Zubair extension of the gamma function conclude with the classical
gamma function. Mubeen have introduced the following extension of k-gamma function [9]

Γb,k(z) =

∫ ∞

0

tz−1e−
tk

k
− bkt−k

k dt, Re(z) > 0, b ≥ 0, k > 0. (1.2)

Note that, when b = 0, Γb,k(z) tends to the k-gamma function defined by [3]

Γk(z) =

∫ ∞

0

tz−1e−
tk

k dt, k > 0, Re(z) > 0. (1.3)

Also, when k = 1, Γb,k(z) tends to Γb(z) and if both b = 0 and k = 1, then Γb,k(z) tends to Euler’s
classical gamma function Γ(z).

Some properties of the extended gamma k-function Γb,k(x) are given in [9] as follows:

Γb,k(x+ k) = xΓb,k(x) + bkΓb,k(x− k), b ≥ 0, k > 0 (difference formula), (1.4)

bxΓb,k(−x) = Γb,k(x), Re(b) > 0, k > 0 (reflection formula). (1.5)

Throughout of this work, N indicates the set of natural numbers and N0 = N ∪ {0}.
By differentiating repeatedly (1.3) with respect to z, one can obtain

Γ
(m)
b,k (z) =

∫ ∞

0

tz−1(ln t)me−
tk

k
− bkt−k

k dt, Re(z) > 0, b ≥ 0, k > 0 (1.6)

where m ∈ N.

In this paper our goal is to give some inequalities concerning the function Γ
(m)
b,k (x) for x > 0 by

using similar techniques as in [10] and [11]. Our results are also generalizations of some known
results in the literature.

2 Main Results

In this section we present our main results by using Hölder’s, Minkowski’s and Young’s inequalities
among other algebraic tools.

Lemma 1 ([12]). (Hölder’s Inequality) Let α, β ∈ (0, 1) and α + β = 1. If f(x) and g(x) are
integrable real valued functions on [0,∞), then the inequality∫ ∞

0

|f(x)g(x)| dx ≤
[∫ ∞

0

|f(x)|α dx
] 1

α
+

[∫ ∞

0

|g(x)|β dx
] 1

β
(2.1)

holds.

2



Ege; ARJOM, 14(4): 1-8, 2019; Article no.ARJOM.50206

Theorem 1. Let x, y > 0, b ≥ 0, k > 0, α, β ∈ (0, 1), α + β = 1, m, n even, m,n ∈ N0 and
αm+ βn ∈ N0. Then the extension of k-gamma function satisfies the inequality

Γ
(αm+βn)

b,k (αx+ βy) ≤
[
Γ
(m)
b,k (x)

]α[
Γ
(n)
b,k (y)

]β
.

Proof. By using the equation (1.6), we obtain

Γ
(αm+βn)

b,k (αx+ βy) =

∫ ∞

0

tαx+βy−1(ln t)αm+βne−
tk

k
− bkt−k

k dt.

Then since α+ β = 1, and m, n are even we have

Γ
(αm+βn)

b,k (αx+ βy) =

∫ ∞

0

tα(x−1)(ln t)αme

(
− tk

k
− bkt−k

k

)
α tβ(y−1)(ln t)βne

(
− tk

k
− bkt−k

k

)
β dt

≤
[∫ ∞

0

tx−1(ln t)me

(
− tk

k
− bkt−k

k

)]α[∫ ∞

0

tx−1(ln t)ne

(
− tk

k
− bkt−k

k

)]β
,

by using Hölder’s inequality (2.1) and the result follows.

Remark 1. By letting k = 1 in the Theorem 1, we obtain the Theorem 3.1 of [11].

The following definition is well known in the literature; see for example [13].

Definition 1. Let f : [a, b] ⊂ R → (0,∞). Then f is called a log-convex function, if

f(αx+ (1− α)y) ≤ [f(x)]α[f(y)]1−α

holds for any x, y ∈ [a, b] and α ∈ [0, 1].

Corollary 1. Let x > 0, b ≥ 0, k > 0, α, β ∈ (0, 1), α + β = 1, m even and m ∈ N0. Then the

function Γ
(m)
b,k (x) is log-convex.

Proof. From the Theorem 1 by letting m = n we get

Γ
(m)

b,k (αx+ βy) ≤
[
Γ
(m)
b,k (x)

]α[
Γ
(m)
b,k (y)

]β
,

which completes the proof.

Corollary 2. Let x > 0, b ≥ 0 and k > 0. Then the function Γb,k(x) satisfies the inequality

Γb,k(x)Γ
′′
b,k(x) ≥ [Γ

′
b,k(x)]

2.

Proof. From the log-convexity property of Γb,k(x) we have [ln Γb,k(x)]
′′
≥ 0. Then

[ln Γb,k(x)]
′′
=

[Γ′
b,k(x)

Γb,k(x)

]
=

Γb,k(x)Γ
′′
b,k(x)− [Γ

′
b,k(x)]

2

[Γb,k(x)]2
≥ 0,

and the proof completes.

Corollary 3. Let x > 0, b ≥ 0, k > 0, m ∈ N0 and m even. Then the inequality

[Γ
(m+1)
b,k (x)]2 ≤ Γ

(m)
b,k (x)Γ

(m+2)
b,k (x)

holds.

Proof. Let n = m+ 2, α = β = 1
2
and x = y in the Theorem 1.
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Definition 2. We introduce the extended k-digamma (k-psi) function ψb,k(x) as the logarithmic
derivative of Γb,k(x);

ψb,k(x) =
d

dx
ln Γb,k(x) =

Γ
′
b,k(x)

Γb,k(x)
=

1

Γb,k(x)

∫ ∞

0

tx−1 ln t e−
tk

k
− bkt−k

k dt

and more generally the extended k-polygamma function ψ
(m)
b,k (x) by

ψ
(m)
b,k (x) =

dm+1

dx
ln Γb,k(x)

for b, k > 0, m = 1, 2, . . . and x > 0.

From the difference formula (1.4), we get

ln Γb,k(x+ k) = lnx+ lnΓb,k(x) + k ln b+ lnΓb,k(x− k).

Then,

ψb,k(x+ k) =
1

x
+ ψb,k(x) + ψb,k(x− k). (2.2)

Theorem 2. The function ψb,k(x) is increasing for x > 0.

Proof. Since Γb,k(x) is log-convex function we have [ln Γb,k(x)]
′′
≥ 0 for all x > 0. Then,

ψ
′
b,k(x) = [ln Γb,k(x)]

′′
=

Γb,k(x)Γ
′′
b,k(x)−

(
Γ

′
b,k(x)

)2
[Γb,k(x)]2

≥ 0

by using the Corollary 2.

Theorem 3. The following reflection formulas hold true for b, k > 0, m = 1, 2, . . . and x > 0,

ψb,k(x) + ψb,k(−x) = ln b, (2.3)

ψ
(m)

b,k (x) = (−1)m+1ψ
(m)
b,k (−x). (2.4)

Proof. By using the reflection formula (1.5), we have

x ln b+ lnΓb,k(−x) = lnΓb,k(x),

and taking the derivative of both sides in the last equation, we obtain the equation (2.3). Also
taking the derivatives of the equation (2.3) repeatedly, we get the equation (2.4).

Theorem 4. Let x, y > 0, b ≥ 0, k > 0, m ∈ N0, m even, α, β ∈ (0, 1), α+β = 1 and s ≥ 0. Then
the inequality

Γ
(m)
b,k (αx+ βy + s) ≤ [Γ

(m)
b,k (x+ s)]α[Γ

(m)
b,k (y + s)]β

is valid.

Proof. By using the equation (1.6) and Hölder’s inequality, we have

Γ
(m)
b,k (αx+ βy + s) =

∫ ∞

0

t(αx+βy+s)−1(ln t)me−
tk

k
− bkt−k

k dt

=

∫ ∞

0

tαx+sα−α(ln t)αm e

(
− tk

k
− bkt−k

k

)
α tβy+sβ−β(ln t)βm e

(
− tk

k
− bkt−k

k

)
β

≤
[∫ ∞

0

tx+s−1(ln t)me−
tk

k
− bkt−k

k dt
]α[∫ ∞

0

ty+s−1(ln t)me−
tk

k
− bkt−k

k dt
]β

= [Γ
(m)
b,k (x+ s)]α[Γ

(m)
b,k (y + s)]β .
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Hence;

Γ
(m)
b,k (αx+ βy + s) ≤ [Γ

(m)
b,k (x+ s)]α[Γ

(m)
b,k (y + s)]β .

Theorem 5. Let x, y > 0, b ≥ 0, a, c, k > 0, m ∈ N0, m even, α, β ∈ (0, 1) and α + β = 1. Then
the function Γb,k(x) satisfy the inequality

Γ
(m)
b,k (ax+ cy) ≤ [Γ

(m)
b,k (

ax

α
)]α[Γ

(m)
b,k (

cy

β
)]β .

Proof. Similarly, by the Hölder’s inequality, we obtain

Γ
(m)
b,k (ax+ cy) =

∫ ∞

0

tax+cy−1(ln t)m e−
tk

k
− bkt−k

k dt

=

∫ ∞

0

tax−α(ln t)αm e

(
− tk

k
− bkt−k

k

)
α tcy−β(ln t)βm e

(
− tk

k
− bkt−k

k

)
β

≤
[∫ ∞

0

t
ax
α

−1(ln t)m e−
tk

k
− bkt−k

k dt
]α[∫ ∞

0

t
cy
β

−1
(ln t)m e−

tk

k
− bkt−k

k dt
]β
,

establishing the result.

Lemma 2. [12] (Young’s Inequality) If a and b are nonnegative, α, β ∈ (0, 1) and α+ β = 1, then
the inequality

aαbβ ≤ αa+ βb (2.5)

holds.

Corollary 4. Let x, y > 0, b ≥ 0, a, c, k > 0, m ∈ N0, m even, α, β ∈ (0, 1) and α+ β = 1.
Then the following inequality holds

Γ
(m)
b,k (ax+ cy) ≤ αΓ

(m)
b,k

(ax
α

)
+ βΓ

(m)
b,k

(cy
β

)
.

Proof. The proof follows immediately by using the Theorem 5 and the Lemma 2.5.

Remark 2. Let m = n = 0 and a = b = 1 in the Theorem 5. Then we obtain the Theorem 3.9 and
Corollary 3.10 in [11].

Lemma 3. [12] (Minkowski’s Inequality) Let 1 ≤ p < ∞. If f(x) and g(x) are integrable real
valued functions on [0,∞), then the inequality[∫ ∞

0

|f(x) + g(x)|p dx
] 1

p ≤
[∫ ∞

0

|f(x)|p dx
] 1

p
+

[∫ ∞

0

|g(x)|p dx
] 1

p
(2.6)

holds.

Theorem 6. Let x, y > 0, b ≥ 0, k > 0, m,n ∈ N0, m,n even, α, β ∈ (0, 1) and u ≥ 1. Then the
inequality

[Γ
(m)
b,k (x) + Γ

(n)
b,k (y)]

1
u ≤ [Γ

(m)
b,k (x)]

1
u + [Γ

(n)
b,k (y)]

1
u

holds for x, y > 0.

5
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Proof. Since xk + yk ≤ (x+ y)k for x, y ≥ 0 and k ≥ 1, by using Minkowski’s inequality we obtain
that

[Γ
(m)
b,k (x) + Γ

(n)
b,k (y)]

1
u =

[∫ ∞

0

tx−1(ln t)me−
tk

k
− bkt−k

k dt+

∫ ∞

0

ty−1(ln t)ne−
tk

k
− bkt−k

k dt
] 1

u

≤
[∫ ∞

0

([
t
x−1
u (ln t)

m
u e

(
− tk

k
− bkt−k

k

)
1
u

]
+

[
t
y−1
u (ln t)

n
u e

(
− tk

k
− bkt−k

k

)
1
u

])u

dt
] 1

u

≤
[∫ ∞

0

tx−1(ln t)me−
tk

k
− bkt−k

k dt
] 1

u
+

[∫ ∞

0

ty−1(ln t)ne−
tk

k
− bkt−k

k dt
] 1

u
,

and the proof completes.

Remark 3. By letting k = 1 in the Theorem 6, we obtain the Theorem 3.12 of [11].

Theorem 7. The inequality

Γ
(m)
b,k (x) ≤

Γ
(m−r)
b,k (x) + Γ

(m+r)
b,k (x)

2

is valid for x > 0, m, r ∈ N0, m, r even such that m ≥ r.

Proof. By direct computation, we obtain the result since we have

Γ
(m−r)
b,k (x) + Γ

(m+r)
b,k (x)− 2Γ

(m)
b,k (x) =

∫ ∞

0

[ 1

(ln t)r
+ (ln t)r − 2

]
(ln t)mtx−1e−

tk

k
− bkt−k

k dt

=

∫ ∞

0

[
1− (ln t)r

]2
(ln t)m−rtx−1e−

tk

k
− bkt−k

k dt ≥ 0.

Theorem 8. Let b, k > 0, m ∈ N0 and m even. Then for 0 < a ≤ 1, the inequalities

[Γ
(m)
b,k (k)]a−1 ≤

Γ
(m)
b,k (k + x)

Γ
(m)
b,k (k + ax)

≤
Γ
(m)
b,k (2k)

Γ
(m)
b,k (k + ak)

(2.7)

hold true for x ∈ [0, k]. If a ≥ 1, then the inequalities (2.7) are reversed.

Proof. From the Corollary 1 we have Γ
(m)
b,k (x+ k) is log-convex. Then logarithmic derivative of

Γ
(m)
b,k (x+ k) is increasing. Let f(x) = [ln Γ

(m)
b,k (x+ k)]

′
and g(x) =

[Γ
(m)
b,k

(x+k)]a

Γ
(m)
b,k

(ax+k)
. Then

ln g(x) = a ln Γ
(m)
b,k (x+ k)− ln Γ

(m)
b,k (ax+ k).

Now, taking derivatives of both sides of the last equation, we get

g
′
(x)

g(x)
= a[f(x)− f(ax)].

If 0 < a ≤ 1 then g
′
(x) ≥ 0, since f(x) is increasing and g(x) > 0. Then the inequalities (2.7)

follows for x ∈ [0, k]. Similarly, for a ≥ 1 reverse of the inequalities (2.7) is satisfied.

Theorem 9. Suppose that s ∈ (0, 1), b, k > 0, m ∈ N0 and m even. Then the inequality

Γ
(m)
b,k (x+ s) ≤ [Γ

(m)
b,k (x)]1−s[Γ

(m)
b,k (x+ 1)]s

is valid for x > 0.

6
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Proof. Let f(t) = t(1−s)(x−1)(ln t)m(1−s) e−(1−s)
(

tk

k
− bkt−k

k

)
and

g(t) = tsx(ln t)ms e−s
(

tk

k
− bkt−k

k

)
. Then by using Hölder’s inequality we get

Γ
(m)
b,k (x+ s) ≤

[∫ ∞

0

(
t(1−s)(x−1)(ln t)m(1−s)e−(1−s)

(
tk

k
− bkt−k

k

)) 1
1−s

dt
]1−s

×

×
[∫ ∞

0

(
tsx(ln t)mse−s

(
tk

k
− bkt−k

k

)) 1
s
dt
]s

=
[∫ ∞

0

tx−1(ln t)me−
tk

k
− bkt−k

k dt
]1−s [∫ ∞

0

(tx(ln t)me−
tk

k
− bkt−k

k dt
]s
dt

= [Γ
(m)
b,k (x)]1−s[Γ

(m)
b,k (x+ 1)]s,

completes the proof of the theorem.

3 Conclusions

In this study, we establish some inequalities for the extension of k-gamma function by using the
classical Hölder’s and Minkowski’s inequalities and other algebraic tools. The established results
are generalizations of some previous results.
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