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Abstract 
 
In this paper, we extend the Bernardi-Raugel element [1] to convex polygonal meshes by using the 
generalized barycentric coordinates. Comparing to traditional discretizations defined on triangular and 
rectangular meshes, polygonal meshes can be more flexible when dealing with complicated domains or 
domains with curved boundaries. Theoretical analysis of the new element follows the standard mixed finite 
element theory for Stokes equations, i.e., we shall prove the discrete inf-sup condition (LBB condition) by 
constructing a Fortin operator. Because there is no scaling argument on polygonal meshes and the generalized 
barycentric coordinates are in general not polynomials, special treatments are required in the analysis. We 
prove that the extended Bernardi-Raugel element has optimal convergence rates. Supporting numerical results 
are also presented.   
 

 
Keywords: Mixed finite element method; stokes equations; generalized barycentric coordinates. 

 

1 Introduction 
 
Let � ⊂ ℝ� be a polygon. We consider the following Stokes equation: 
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�
− △ � + �� = � �� �,
��� � = 0 �� �,
� = 0 �� ��,

�                                                                                                                                  (1.1) 

 
where � is the velocity, � is the pressure, and � is the given body force. 
 
When discretizing Equation (1.1) using the finite element method, the discrete spaces for the velocity and the 
pressure need to be stable, i.e., satisfying the discrete inf‐sup (LBB) condition, in order for the method to 
converge. Readers may refer to the books [2,3] and references therein for the numerous works in this area. On 
two dimensional triangular/quadrilateral meshes, the discretization using continuous piecewise linears/bilinears 
for the velocity and piecewise constants for the pressure, which we will call the PIPO/QIPO element, does not 
satisfy the LBB condition. However, researchers have long being aware that the actual performance of the 
PIPO/QIPO element is mesh dependent. The PIPO element does not converge at all on most meshes except for 
the criss‐cross ones (see Example 8.10.2 in [4]), on which it behaves similarly to a QIPO elemen‐ � defined on 
the underlying quadrilaterals. The QIPO element is equally complicated. Using a macro‐element technique [5], 
on regular quadrilateral meshes one can prove that the QIPO element gives optimal approximation for the 
velocity, while the pressure often admits the so‐called “spurious modes” [6,7]. Moreover, numerical experiments 
have shown that on general distort‐ ed quadrilateral meshes, the spurious pressure mode may disappear. So far 
there is no theoretical explanation for this yet (see Section 8.10.2 in [4]). But from the numerical point of view, 
such a phenomenon intrigues a question on how a similar discretization would behave on regular and irregular 
polygonal meshes. And if is not sable, is it possible to make it stable by the well‐known technique of adding 
bubbles to the velocity space? 
 
In the last decade, polygonal/polyhedral meshes have gained considerable attention in the scientific computing 
community partly due to their flexibility when dealing with complicated domains or domains with curved 
boundaries. By using the generalized barycentric coordinates (GBC‐ s) [8, 9, 10, 11, 12], researchers have 
extended the �1/�1 conforming finite element to general polygonal meshes [13,14,15]. Based on these, it is 
indeed straight‐forward to extend the PIPO/QIPO element to polygonal meshes. 
 
In [16], Talischi et al. investigated a direct extension of the PIPO/QIPO element to polygonal meshes. Following 
an argument given in [17] for the mimetic finite difference method, they get a sufficient condition for the 
discretization to be stable: that is, if every internal vertex in the mesh is connected to at most three edges. The 
stability is not clear on meshes that do not satisfy this condition, and it certainly fails on most triangular and 
quadrilateral ones. Later, in [18] Vu‐Huu et al. considered an extension of the PIPI element, where both the 
velocity and the pressure are discretized by continuous piecewise GBCs. Since one would not expect the PIPI 
element to be stable in general, a stabilization term based on the polynomial pressure projection [19] is added to 
ensure the convergence of the discretization. The same authors of [18] also considered an extension of the MINI 
element in [20], which is essentially the extended PIPI element with element‐wise bubbles added to the velocity 
space. Unfortunately, although the MINI element is stable on triangular meshes, numerical calculation has 
shown that the extended MINI element (with its particular choice of bubbles) is not stable in general. Again, a 
stabilization is required to ensure the convergence of the discretization. 
 
We notice that previous extensions given in [16, 20, 18] require either special meshes or stabilizations in order 
to converge. The aim of this paper is to construct a stable finite element discretization for the Stokes equation 
(1.1) on arbitrary polygonal meshes, by simply adding bubbles to the velocity space of the extended PIPO/QIPO 
element. To this end, we borrow the idea from the Bernardi‐Raugel (BR) element [1]. On triangular and 
quadrilateral meshes, the BR element is essentially the PIPO/QIQO element with edge bubbles added to the 
velocity space. We extend this element to polygonal meshes using GBCs. We shall prove that the extension 
satisfies the LBB condition on arbitrary convex polygonal meshes and thus provides optimal approximation to 
both the velocity and the pressure. The analysis follows the standard one for the triangular/quadrilateral BR 
element, but requires many modifications because there is no scaling argument on polygonal meshes and the 
generalized barycentric coordinates are in general not polynomials. 
 
The paper is organized as follows. In Section 2, we present the definition of GBCs and construct a Clément 
interpolation associated with the GBCs. We also prove the stability and approximation property of the Clément 
interpolation. In Section 3, the extended BR element is defined, with its well‐posedness and approximation 
properties analyzed. Finally, in Section 4, supporting numerical results are presented. 
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2 Generalized Barycentric Coordinates and the Clément Interpolation 
 
In this section, we briefly introduce the generalized barycentric coordinates [8, 9, 10, 11, 12], and then define a 
Clément type interpolation [21] associated with the GBC. 
 
Let � ⊂ ℝ� be a polygon with vertices ��, 1 ≤ � ≤ �, ordered counter‐clockwise. We use modular arithmetic to 
extend the index � beyond the range of {1, …, �}, for example, setting �� = �� , ��� � = ��, etc. Functions �� , for 
� = 1, …, �, are called the a set of GBCs on �, if they satisfy 
 
(1) (Non‐negativity) All ��, for 1 ≤ � ≤ �, have non‐negative value on �; 
(2) (Linear precision) For any linear function �(�) defined on �, one has 
 

�(�) = ∑ ��
�� � (��)��(�) , for all � ∈ �. 

 
The linear precision property is equivalent to the combination of the unit decomposition and the Lagrange 
properties [9]: 
 

∑ ��
�
�� � = 1, ∑ ��

�
�� � �� = �.                                                                                                                 (2.1) 

 
It is clear that ����{��, 1 ≤ � ≤ �} contains the space of all linear polynomials. 
 
When � = 3, there is a unique GBC that is the traditional barycentric coordinates. When � ≥ 4, there are more 
than one GBCs. As an example, we present the formula for the Wachspress GBC [11], which is defined only on 
convex polygons. Denote by �� the edge of � pointing from �� to ��� �, and by �� the unit outward normal vector 
on the edge ��. For a point � ∈ �, denote by ℎ(�) the distance from � to the edge �� , i.e., ℎ�(�)= (�� − �)⋅�� . 
Then a formula for computing the Wachspress GBCs, given by Meyers et al. [22], is 
 

��(�)=
� �(�)

� (�)
,                                                                                                                                        (2.2) 

 
where 
 

� �(�)=  det [
��� �

��� �(�)
, 

��

��(�)
] and � = ∑ � �

�
�� � . 

 
When � is a triangle, the Wachspress GBC is identical to the traditional barycentric coordinates. On general 
polygons, it consists of rational functions by definition. 
 
By definition, the value of �� on the jth vertex of � is ���, and the restriction of �� on an edge of � is linear. This 

makes GBCs suitable for constructing � � conforming finite element spaces. To this end, we first introduce the 
standard notation of Sobolev spaces. On a given set � ⊂ ℝ�, denote by � �(�) the usual Sobolev space equipped 
with the norm ‖ . ‖�,�  and the semi‐norm | . |�,� . When � = 0, � �(�) coincides with the square integrable space 
��(�) and we simply denote the �� norm on � by ‖ ‖� . Denote by )�  and < ⋅, ⋅> � the �� inner‐product and the 
duality form, respectively, in �. When � = �, we suppress the subscript � in the norm and the inner‐product, for 
example, ‖  . ‖� = ‖  . ‖�,� , ‖  . ‖= ‖ . ‖� , and (. , .)=(. , .)�  . Denote by � �

�(�) the closure of ��
∞(�) in � � for 

� ≥ 0, and by ��
�  () the mean value free subspace of ��. Finally, all the above‐defined notations can be easily 

extended to vector and tensor spaces, using the usual tensor products. 
 
Let ��  be a polygonal mesh on the domain �. For simplicity, we assume that all polygons in �� are convex. For 
each � ∈ �� , denote by ℎ�  the diameter of � , by ��  the diameter of the largest disk in �  such that �  is 
star‐shaped with respect to, and by ℎ∗,�  the minimum distance between a vertex of � and a non‐incidental edge, 

i.e., . We assume that ��  satisfies the following regularity assumptions: 

 
(H1) There exists a constant � > 0 such that ℎ� ≤ ���  for all � ∈ �� ; 
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(H2) There exists a constant � > 0 such that ℎ∗,� ≥ �ℎ�  for all � ∈ ��; 
 
(H3) The number of vertices of each polygon in �� is uniformly bounded above. 
 

(H4) �� is quasi‐uniform with the characteristic size , i.e., there exists a constant � > 0 such 
that ℎ� ≥ �ℎ for all � ∈ ��. 
 
Remark 2.1. Assumption (� 2) immediately implies that each edge of the mesh �� has length greater than or 
equal to �ℎ� . When � is convex, assumption (� 2) also implies assumption (� 3) . Here we list them separately 
to facilitate later discussions. 
 
Since ��  is quasi‐uniform, we will use ℎ  instead of ℎ�  in the rest of the paper. On a convex polygon � , 
assumption (H1) immediately implies the bramble‐Hilbert lemma [2] 
 

���|� − �|�,� ≤ �ℎ�� �|�|�,� , for 0 ≤ � ≤ � and � ∈ � �(�), � ∈ ��                                              (2.3) 

� ∈ ��(�) 
 
 
and by [23], conditions (H1) and (H3) imply the following trace inequality 
 

‖�‖��
� ≤ �(ℎ� �‖�‖�

� + ℎ‖��‖�
� ) , for all � ∈ � �(�) ,                                                                       (2.4) 

 
where the general constant � in both (2.3) and (2.4) is independent of ℎ or the shape of �. 
 
The GBCs have bounds 0 ≤ ��(�) ≤ 1 for all � ∈ �. Moreover, a gradient bound has been proved in [24,25,26] 
for Wachspress, Sibson, and mean value coordinates. This bound is essential to the finite element analysis to be 
given later. 
 
Lemma 2.1. On a convex polygon � satisying assumptions (��)− (� 4) , the Wachspress, Sibson, and mean 
value coordinates satisy 
 

 
 
where � is a constant independent of ℎ or the shape of �. 
 
Proof. The proof for the Wachspress coordinates can be found in [24], with the right‐hand side of the inequality 
being 4/ℎ∗,� . For the Sibson and mean value coordinates, their gradient bounds follow from a simple uniform 
scaling of Lemma 7 in [25] and Theorem 1 in [26], respectively. Although the mean value coordinates can be 
defined on nonconvex polygons, but the proof in [26] is only for convex polygons. 
 
The gradient bounds for the Sibson and mean value coordinates hold even if (H2) is replaced by a weaker 
assumption that all edges of the polygon have length greater than �ℎ. □ 
 
Then, we define an � � conforming finite element space on ��  as follows: 
 

�� = { � ∈ ��(Ω) such that �|� ∈ ��  for all � ∈ ��} ⊂ � �(Ω) 
 
where �� = ����{��, 1 ≤ � ≤ �} is spanned by the GBCs on �. It is clear that a function in ��  is uniquely 
determined by its values at all vertices of �� . Similarly, one can define a subspace of � �

� (Ω) as follows: 
 

��,� = { � ∈ �� such that �|�� = 0}. 
 
It is well known that a nodal value interpolation into �� or ��,� requires � �(Ω) functions, with � > 1. It can not 
be defined on � � A popular substitution is the Clément interpolation [21, 27]. The Clément interpolation has 
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been well‐studied on triangular and rectangular meshes. But we have not found any related work for GBCs 
defined on polygonal meshes. Given that the GBCs are no longer polynomials and the scaling argument does not 
work on polygons, it is necessary to carefully examine the definition and the approximation error of the Clément 
interpolation for GBCs. The details are given in the rest of this section, which basically follows the analysis in 
the original paper by Clément [21] but with some modifications to adapt to the GBC case. 
 
Denote by �� the set of all vertices in �� , and �  the cardinality of �� . Without loss of generality, we assume that 
the first �� vertices lie in the interior of � and the rest lie on ��. Let {� �}�� �

�  be a set of basis for �� satisfying 
� �(��) = ��� for �= 1, …, �. Let 

 
�� = ������ ∩ �,���������������� 

 
and denote by �� (��) the space of all polynomials with degree no more than � on ��. Let ��  : �

�(��)→ ��(��) 
be the �� orthogonal projection. Define the Clément interpolations �  : � � (Ω) → ��  and �� : � �

� (Ω) → ��,� as 
follows: 
 

�� = ∑ ��
�
�� � �(��)��  and ��� = ∑ ��

� �
�� � �(��)� � .                                                                            (2.5) 

 
In order to carry out the interpolation error analysis for �  and ��, we make two additional assumptions on the 
mesh: 
 
(H5) Each �� intersects with only a finite number of polygons in ��. 
 
(H6) Each �� contains a disk centered at �� with radius ��, is star‐shaped with respect to the disk, and there exists 
a constant � > 0 such that ℎ ≤ ��� for all ��. 
 
Then by [2], the Bramble‐Hilbert lemma holds on ��, that is 
 

                                (2.6) 

 
where the constant � depends on the ratio ℎ/�� but not on the shape of ��. 
 
Now, we can prove the following � � stability of the local �� projection: 
 
Lemma 2.2. Under the condition (� 6) , one has 
 

|���|�,��
≤ �|�|�,��

, for all � ∈ � �(��) , 

 
where the constant � is independent of ��. 
 
Proof. This result is known on triangular meshes, for example, see Lemma 3.3 in [28]. However, the proof needs 
to be modified on ���������∧ meshes since the standard scaling argument no longer works. We define a 

reference polygon ��� through magnifying �� by a factor of 
�

�
. Then, condition (H6) ensures that ���  lie between 

two concentric disks, an inner disk �� with radius 
��

�
= � (1) and an outer disk �� with radius 

��� �∈��
��

�
= � (1) . 

Denote by V the value of function � on ���, and ���  the ��‐projection onto ��(���) . A simple calculation shows that 
 

 
 
where we used the norm equivalence on finite dimensional vector spaces and hence the constant � depends only 

on the radius of �� and �� but not on the shape of ���. Since ��� maps any constant function � to itself, one has 
 

 



 
 
 
 

Chen; JAMCS, 36(4): 62-78, 2021; Article no.JAMCS.68717 
 
 

 
67 

 

where in the last step we have used the Bramble‐Hilbert lemma (2.6) on ���. 
 

Noticing that under the uniform scaling one has |���|�,��
= |�����|�,���

 and |�|�,��
= |��|�,���

, this completes the 

proof of the lemma. □ 
 
In the rest of the paper, we shall always assume that the mesh contains convex polygons and satisfies 
assumptions (� 1)− (� 6) . Next we can prove the main estimates of the Clément interpolations �  and ��. 
 
Theorem 2.1. For each � ∈ �� , one has 
 

|� − �� |�,� ≤ �ℎ�� �|�|�,��
, for � = 0,1, � = 1,2 and � ∈ � �(�) , 

 
where � is a positive constant independent of �, ℎ or �, and 
 

�� = � ��

��∈�

. 

 
Proof. Without loss of generality, denote by ��, 1 ≤ � ≤ � the vertices of �. Then by (2.1) one has 
 

                                             (2.7) 

 
We first estimate the term |� − ���|�,��

. For � = 0, by the Bramble‐Hilbert lemma one has 

 
‖� − ���‖��

=  ���‖� − �‖�� ≤ �ℎ�|�|�,��
. 

� ∈ ��(��) 
 
For � = 1, again by the Bramble‐Hilbert lemma we know that for each � there exists a � ∈ ��(��) such that 
|� − �|�,��

≤ �ℎ�� �|�|�,��
. Then, by Lemma 2.2 and the fact that ��� = � one gets 

 
|� − ���|�,��

≤ |� − �|�,��
+ |��(� − �)|�,��

≤ �|� − �|�,��
≤ �ℎ�� �|�|�,��

. 
 
Combining the above, one has 
 

|� − ���|�,��
≤ �ℎ�� �|�|�,��

≤ �ℎ�� �|�|�,��
. 

 
Then we consider the second term in the right‐hand side of Inequality (2.7). Since the values of all ��  lie in [0,1] 
and ���  are bounded as in Lemma 2.1, by the regularity assumption of the mesh, it is clear that 
 

|� �|�,� ≤ �ℎ�� �  for � = 0,1.                                                                                                               (2.8) 
 
Denote by ��  the center of the largest disk in �, and �� the triangle formed by vertices �� , ��  and ��� �. By the 
regularity assumption of the mesh, obviously each ��  is also a regular triangle, i.e, all three edges of �� have 



 
 
 
 

Chen; JAMCS, 36(4): 62-78, 2021; Article no.JAMCS.68717 
 
 

 
68 

 

length of � (ℎ) and the largest internal angle of ��  is bounded away from �. Note that ��� − ��� is alinear 
polynomial. By the scaling argument on ��, one has 
 

|(��� − ���)(��)|≤ �ℎ� �‖��� − ���‖�,� �
 

≤ �ℎ� �(‖� − ���‖�,� �
+ ‖� − ���‖�,� �

) 

≤ �ℎ� �(‖� − ���‖�,��
+ ‖� − ���‖�,��

) 

≤ �ℎ�� �(|�|�,��
+ |�|�,��

) 

≤ �ℎ�� �|�|�,��
. 

 
Therefore 
 

|� (

�

�� �

��� − ���)(��)��|�,� ≤ � � ℎ�� �

�

�� �

|�|�,��
= �(� − 1)ℎ�� �|�|�,��

. 

 
Combining the above and using assumption (H3), we have 
 

|� − �� |�,� ≤ �ℎ�� �|�|�,��
+ �(� − 1)ℎ�� � |�|�,��

≤ �ℎ�� �|�|�,��
. 

 
This completes the proof of the theorem. □ 
 
Corollary 2.1. For � = 0,1 and � = 1,2, the Clément interpolation �  satisfies 
 

|� − �� |� ≤ �ℎ�� �|�|� , for all � ∈ � �(�) .                                                                                      (2.9) 

 
In particular it has the following � � stability: 
 

|�� |� ≤ �|�|�, ��� ��� � ∈ � �(�) .                                                                                                  (2.10) 
 
Proof. Equation (2.9) follows directly from Theorem 2.7 and conditions (H3), (H5). Equation (2.10) follows 
from (2.9) with � = � = 1 and a triangle inequality. □ 
 
Theorem 2.2. For � = 0,1 and � = 1,2, the Clément interpolation �� satisfies |� − ���|� ≤ �ℎ�� �|�|� , for all 

� ∈ ��
�(�)∩ � �(�) . 

 
In particular it has the following � � stability: 
 

|���|� ≤ �|�|�, for all � ∈ ��
� () ∩ � �(�) . 

 
Proof. By Corollary 2.1 and the triangle inequality, We only need to prove 
 

|(� − ��)�|� ≤ �ℎ�� �|�|�. 

 
Noticing that ��  and ��� are identical on internal polygons, thus it reduces to proving 
 

|(� − ��)�|�,� ≤ �ℎ�� �|�|�,��
, 

 
for all � ∈ ��  satisfying �� ∩ �� ≠ ∅. Without loss of generality, assume the first �  vertices of � lie on ��. 
Then by (2.8) one has 
 

|(� − ��)�|�,� = |� ��

�

�� �

�(��)� �|�,� ≤ � |

�

�� �

���(��)||� �|�,� ≤ �ℎ�� � � |

�

�� �

���(��)|. 
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For each ��, � = 1, …, � , there exists an edge �� ⊂ �� ∩ �� such that �� is an end of the edge ��. By assumption 
(H2), the length of �� is of � (ℎ) . Using the scaling argument on ��, the fact that � = 0 on �� and the trace 
inequality (2.4), one gets 
 

|���(��)|≤ �ℎ� �/�‖���‖�,��
= �ℎ� �/�‖� − ���‖�,��

 

≤ �(ℎ� �‖� − ���‖� + |� − ��|�,� ) 
≤ �ℎ�� �|�|�,��

. 

 
Combining the above, this completes the proof of the theorem. □ 
 

3 Finite Element Approximation 
 
In this section we construct a polygonal finite element discretization for the Stokes equations using the 
generalized barycentric coordinates. The element is an extension of the Bernardi‐Raugel (BR) element [1] as it 
is degenerates to the BR element on triangles. 
 
Let � = (��

�(�))� and � = ��
�  The variational form of Problem (1.1) can be written as: Find � ∈ �  and � ∈ � 

such that 
 

�
�(�, �)+ �(�, �) = (�, �) ��� ��� � ∈ � ,
�(�, �) = 0 ��� ��� � ∈ �,

�                                                                                                  (3.1) 

 
where 
 

�(�, �) = (��, ��) and �(�, �) = −(���  �, �) . 
 
It is well‐known that Problem (3.1) admits a unique solution. Given finite dimensional sub‐ spaces �� ⊂ �  and 
�� ⊂ � , one can define the finite element discretization to Problem (3.1) as: Find �� ∈ ��  and �� ∈ �� such 
that 
 

�
�(��, �)+ �(�, ��) = (�, �) ��� ��� � ∈ ��,
�(��, �) = 0 ��� ��� � ∈ ��.

�                                                                                            (3.2) 

 

3.1 Finite element spaces 
 
We first define the finite element spaces �� and ��. Consider an element � ∈ ��  with � vertices. Define on � a 
set of vector‐valued functions 
 

� � = ������� � for � = 1,2, … �, 
 
where {��}�� �

�  is a set of GBCs defined on � and �� is the unit outward normal vector on the ith edge �� of �. 
Note that � �  vanishes on ��\�� . Then, we introduce the local finite element space for the velocity on � as 
follows: 
 

�� = ��
� ⊕ ����{� �, � = 1,2, �}. 

 
It is clear that  dim (��) = 3�. Define the degrees of freedom for ��  by 
 

�

�ℎ� ����� ��������� �� � (��) ��� � = 1, … , �,

�ℎ� ������ ��������� �� � (��)��� � = 1, … , �,                                                                                   
�

|��|
∫ �

��
⋅���� ��� � = 1, … , �,

�(3.3) 

 
where |��| is the length of edge �� and �  is a vector‐valued function on �. 
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Lemma 3.1. A function �  in ��  can be uniquely determined by the degrees off reedom given in (3.3). In addition, 
on an edge ��, the value of �  depends only on the degrees offreedom associated with ��, i.e., � (��), � (�) and 

�

|��|
∫ �

��
⋅����. 

 
Proof. For the unisolvency, it is sufficient to prove that when all degrees of freedom in (3.3) vanish, then � ≡ 0. 
Consider 
 

� = � ��

�

�� �

� � + � ��

�

�� �

�
��

0
�+ � ��

�

�� �

�
0
��

�∈ �� . 

 
Since � � vanishes on all vertices of �, it is clear that � (��) = 0 for all � immediately implies that �� = �� = 0, 
for � = 1, …, �. We are left with � = ∑ ��

�
�� � � �. Since � � vanishes on all edges except for ��, one has 

 

0 = � �
��

⋅���� = � ��
��

� � ⋅���� = �� � ��
��

��� ���, 

 
which further implies that �� = 0 for � = 1, …, �. Therefore � ≡ 0. 
 

Likewise, when � (��) = � (��� �) = 0  and ∫ ����
� � ⋅���� = 0 , we can easily deduce that � |��

≡ 0 . This 

completes the proof of the lemma. □ 
 
Lemma 3.1 guarantees that the local finite element spaces ��  can be glued together into an � �  conforming 
global finite element space: 
 

�� = { � ∈ �  such that �|� ∈ ��  for � ∈ ��}. 
 
The space ��  can be viewed as ��,�

�  plus edge bubbles, one for each interior edge. Thus 
 

dim �� = 2 ∗( # of interior vertices in ��) + ( # of interior edges in ��) 
 
We shall use ��  to discretize the velocity. The pressure will be discretized using the space of piecewise 
constants, that is, 
 

�� = { � ∈ � such that �|� ∈ ��(�) for � ∈ ��}. 
 

3.2 The discrete inf‐sup condition 
 
Following the standard mixed finite element analysis [4,3], one obtains the well‐posedness and the 
approximation property of Equation (3.2) if the dis‐ crete spaces �� and �� satisfy the inf‐sup condition 
 

                                                                                  (3.4) 

 
In this section, we prove (3.4) by constructing a Fortin operator from �  to ��. 
 
With a little abuse of the notation, we extend the Clément interpolation ��  : � �

�  (Ω) → ��,�  to the product 

spaces �� : � → ��,�
� . Then, we define a Fortin operator �� : � → ��  by: 

 

�
���(�) = ����(�) ��� ���ℎ ������ � �� ��

∫ (
�

��� − �)⋅��� ��� ���ℎ ���� � �� ��

                                                                                         �(3.5) 

 
By Lemma 3.1, it is easy to see that �� is well‐defined. Moreover, we ha 
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Theorem 3.1. The operator ��  satisfies 
 
(commutativity) �(��� − �, ��)= 0 for all � ∈ �  and �� ∈ ��, 
(stability) |���|� ≤ �|�|� for all � ∈ � , 
(approximability) |� − ���|� ≤ �ℎ|�|� for all � ∈ � ∩ (� �(Ω))� 
 
Proof. By the Green’s formula and the definition of �� , one has 
 

�(��� − �, ��)= − � ��
�

div(��� − �)�� 

= − � ��

�∈��

� d
�

iv(��� − �)�� 

= − � ��

�∈��

� (
��

��� − �)⋅��� 

= 0. 
 
This completes the proof of the commutativity for the Fortin operator. 
 
Next, to prove the stability of the Fortin operator, it suffices to prove that 
 

|��� − �|�,� ≤ �|�|�,��
. 

 
For � ∈ �� , from the definition of the Fortin operator it is clear that 
 

��� − ��� = � ��

�

�� �

� �, 

 
with 
 

�� =
∫ (

��
� − ���)⋅����

∫ � ���
⋅����

=
∫ (

��
� − ���)⋅����

∫ ����
��� ���

=
6

|��|
� (

��

� − ���)⋅����. 

 
By the Schwarz inequality, Assumption (H2), the trace inequality (2.4) and Theorem 2.2, one immediately gets 
 

|��|≤
6

|��|
(|��|

�
�‖� − ���‖�,��

) ≤ �ℎ�
�
�‖� − ���‖�,��

 

≤ �(ℎ� �‖� − ���‖�,� + |� − ���|�,�) (3.6) 

≤ �|�|�,��
. 

 
Using the triangle inequality, one has 
 

|��� − �|�,� = |��� − � + ∑ ��
�
�� � � �|�,�                                                                                                       (3.7) 

 

≤ |��� − �|�,� + |� ��

�

�� �

� �|�,� 

 
By Theorem 2.2, the first term in the right‐hand side of (3.7) satisfies 
 

|��� − �|�,� ≤ �|�|�,��
                                                                                                                       (3.8) 
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For the second term, note that by �� ≤ 1 on � and Lemma 2.1, 
 

|� �|�,� = |������� �|�,� ≤ �‖�(����� �)‖�,�  

= �‖������ � + ��� ����‖�,�  
(3.9) 

≤ �(‖���� �‖�,�� ‖���‖�,�) 

≤ �|�|
�
�ℎ� � ≤ �. 

 
Combining the above gives |��� − �|�,� ≤ �|�|�,��

. This together with assumptions (H3) and (H5) completes 

the proof of the stability for ��. 
 
Finally, we prove the approximability. Note that when � ∈ � ∩ (� �(Ω))� inequalities (3.6) and (3.8) can be 
improved into 
 

|��|≤ �ℎ|�|�,��
, |��� − �|�,� ≤ �ℎ|�|�,��

. 
 
These, combined with assumptions (H3), (H5) and inequalities (3.7), (3.9), give the desired ap‐ proximability 
estimate. □ 
 
Since the Fortin operator ��  is commutative and stable, it is standard [4, 3] to show that 
 
Corollary 3.1. The finite element spaces ��  and ��  satisfy the inf‐sup condition (3.4). Conse‐ quently the 
discrete problem (3.2) admits a unique solution. 
 

3.3 Error estimates 
 
In this sub‐section, we derive the error estimates for the discrete problem (3.2). Since the finite element spaces 
��  and �� satisfy the discrete inf‐sup condition (3.4), by the standard mixed finite element theory [4, 3] one has 
 

                                                  (3.10) 

 
where � and � are solutions to the variational problem (3.1) and �� and �� are solutions to the discrete problem 
(3.2). 
 
Using the approximability of the Fortin operator, one has 
 

 
 

Using (2.3), we get 
 

 
 
Combining the above, this gives the optimal error estimate in the energy norm: 
 
Theorem 3.2. Let (�, �) and (��, ��) be the solutions to (3.1) and (3.2) respectively then 
 

‖� − ��‖� + ‖� − ��‖� ≤ �ℎ(|�|� + |�|�) .                                                                                    (3.11) 
 
Next, we derive an �� error estimate for the velocity. To this end, we first introduce a dual problem 
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�

− △ � + �� = � − �� in Ω,
div� = 0 inΩ,
� = 0 on ∂Ω,

�                                                                                                       (3.12) 

 
When � is convex, the dual problem has full regularity [3], i.e., � ∈ (� �

�(�)∩ � �(�))� and � ∈ ��
� (�)∩ � � () 

satisfy 
 

‖�‖� + ‖�‖� ≤ �‖� − ��‖.                                                                                                             (3.13) 
 
Theorem 3.3. When the dual problem has full regularity (3.13), one has 
 

‖� − ��‖ ≤ �ℎ�(|�|� + |�|�) . 
 

Proof. The proof is standard. By subtracting (3.2) from (3.1) one gets 
 

�
(�(� − ��), ��)− (div �, � − ��)= 0 for all v ∈ U�

(div(� − ��), �)= 0 for all q ∈ V�.
� 

 
Denote by �� : � → �� the �� orthogonal projection. Then we have 
 

‖� − ��‖� = (� − ��, − △ � + ��) 
= (�(� − ��), ��)− (div(� − ��), �) 
= (�(� − ��), �(� − ��))+ (div(��), � − ��)− (div(� − ��), � − ���) 
= (�(� − ��), �(� − ��))+ (div(� − ��), � − ��)− (div(� − ��), � − ���) . 

 
Using the Schwarz inequality, Theorem 3.2, the Bramble‐Hilbert lemma (2.3) and the regularity (3.13), we get 
 

‖� − ��‖� ≤ �ℎ�(|�|� + |�|�)(|�|� + |�|�) ≤ �ℎ�(|�|� + |�|�)‖� − ��‖. 
 
This completes the proof of the lemma. □ 
 

4 Numerical Example 
 
In this section, we test the performance of extended BR element using the following example problem: 
 
Example. Set � = (0,1)× (0,1) and the exact solution 
 

� = �� �
���(2��)���(2��)

−���(2��)���(2��)
�, � = ��( sin (��) sin (��)−

�

��) , 

 
where �� , �� ∈ ℝ are parameters that can be adjusted later. For now we simply set �� = �� = 1. Note that the 

pressure is mean‐value free. 
 
In all numerical experiments, we use the Wachspress coordinates to build the extended BR element. The results 
are compared with numerical results from the extended PIPO/QIPO element [16] built again with the 
Wachspress coordinates. For simplicity, in the rest of this section we shall address the extended PIPO/QIPO 
element by ���0  element” and the extended BR element by “BR element”. Note that the only difference 
between the construction of the BR element and the PIPO element is the presence of edge bubbles. We have 
proved that the BR element is stable on polygonal meshes, while the PIPO element is in general not. 
 
We compare the convergence rates of the BR and the PIPO elements on four types of meshes as shown in Fig. 1: 
uniform rectangular, pentagonal, hexagonal meshes and the centroidal Voronoi tessellations (CVTs) [29]. The 
CVT is a type of Voronoi tessellation where the generator of each polygon is identical to the barycenter of the 
polygon. Each internal vertex of a CVT mesh is connected to at most three edges. We point out that this is also 
true for the hexagonal mesh in Fig. 1. Thus according to [16], the PIPO element is stable on the hexagonal and 
CVT meshes. It is known that the PIPO element is not stable on uniform rectangular meshes. Although it does 
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give optimal approximation for the velocity, but the pressure admits a check‐board type spurious mode [6, 7]. 
The remaining one is the pentagonal mesh, on which we do not have any theoretical knowledge about the 
stability of the PIPO element. 
 

 
 

Fig. 1. Different meshes with approximate size � = �.��. From left to right: (1) a uniform rectangular 
mesh; (2) a uniform mesh consisting of mostly pen‐ tagons; (3) a uniform mesh consisting of mostly 

hexagons; (4) a CVT mesh 
 

 
 

Fig. 2. Convergence rates on the rectangular mesh 
 

 
 

Fig. 3. Convergence rates on the mostly pentagonal mesh 
 

We run the test for ℎ =
�

�
, 

�

�
, 

�

��
, 

�

��
, 

�

��
, and report the errors for both the velocity and the pressure in Figs. 2‐5. 

From the figures we see that the BR element and the PIPO element behaves almost the same on pentagonal and 
CVT meshes, on which the PIPO element is known to be stable. On uniform rectangular meshes, the pressure 
computed using the PIPO element is polluted by the check‐board spurious mode and hence its convergence rate 
is not calculated. The most interesting part happens on pentagonal meshes, on which the BR and the PIPO 
elements give significantly different error for the pressure, as shown in Fig. 3. We also emphasize that since the 
BR element is stable on arbitrary convex polygonal meshes, in all numerical tests it gives optimal convergence 
for both the velocity and the pressure. The convergence rate of the pressure appears to be greater than the known 
optimal rate � (ℎ) for piecewise constants, which is another interesting issue and will be investigated later. 
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Fig. 4. Convergence rates on the mostly hexagonal mesh 
 

 
 

Fig. 5. Convergence rates on the CVT mesh 
 

To further examine the difference between the BR and the PIPO elements on pentagonal meshes, we solve the 
test problem with �� = 0. This sets the exact pressure � ≡ 0 while the exact velocity remains unchanged. 
Without the interference of the physical pressure, the graph of the numerical pressure will clearly reveal 
spurious modes, if there is any. We draw the numerical pressure, computed using the BR element and the PIPO 
element, respectively, in Fig. 6. From the graph, it is clear that the numerical pressure of the PIPO element 
exhibits strong oscillations especially near �� , while the numerical pressure from the stable BR element 
behaves much better. 
 
Finally, we explore the seemingly unreasonable fact that the convergence rates of the pressure in Figs, 2‐5 all 
exceed � (ℎ) , the optimal rate that can be achieved by piecewise constant approx‐ imations. Similar phenomena 
have been observed before in [16, 20, 18]. In our implementation, ‖� − ��‖ is computed using high order 
Gaussian quadratures on the sub‐triangulation of mesh elements. Therefore, this is not a super‐convergence 
caused by using low‐order numerical integra‐ tion. Recall it is generally known that if the exact solution has 
� = 0, some finite elements for the Stokes equations can achieve better convergence rates. For example, the 
�2�0 element has only first‐order overall convergence but it behaves like a second order element if the exact 
pressure is 0. Based on this knowledge, we examine the convergence rate of the BR element on CVT meshes 
under the following settings: 
 
(1) �� = 1, �� = 0, which means the exact solution has � ≡ 0; 

(2) �� = �� = 1; 

(3) �� = 0, �� = 1, which means the exact solution has � ≡ 0. 
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Fig. 6. Spurious modes in the numerical pressure 
 
The results are reported in Fig. 7. Note that both |� − ��|�  and ‖� − ��‖�  still have the same optimal 
convergence rates, while the actual error becomes much smaller when the exact solution has � ≡ 0. This is 
understandable. It is interesting that the convergence rates for ‖� − ��‖� seem to vary from �(ℎ�:��) for the 
� ≡ 0 case to �(ℎ�:��) for the � ≡ 0 case. We point out that the �(ℎ) convergence rate, i.e., the worst‐case 
scenario, is around the optimal convergence rate guaranteed by the theory. It occurs when � is dominant. As the 
exact pressure decreases to 0, the convergence rate of ‖� − ��‖� increases. Our conjecture is that an improved 
error estimate can possibly be proved for the extreme case when � ≡ 0. This makes a good topic for future 
research. 
 

 
 

Fig. 7. Convergence rates on the CVT mesh, with different values for ��  and ��.. 

 

5 Conclusion 
 
In this paper, the mixed finite element method for Stokes equations on polygonal meshes is discussed in detail. 
By using the generalized barycenter coordinates, the Bernardi‐raugel element on triangular meshes is extended 
to polygonal meshes. It is proved theoretically and numerically that the method is stable, that is, it satisfies the 
discrete LBB condition. 
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At present, we regard the finite element on polygonal mesh as an extension from triangular element and 
rectangular element to general convex polygon, which is not only a good supplement to the existing methods, In 
the future, we will consider how to construct Higher‐Order Finite Elements on polygonal meshes and how to 
extend other finite elements on traditional triangular meshes to polygonal meshes 
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