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Abstract
Biomedical laboratories often use different cell types in the same assay or the same cell type in different
assays. One cell type can become contaminated by another, or cells can be mis-identified, giving poor
results. Addressing these issues by DNA analyses can be time-consuming, labor intensive or costly to
implement. Here we uniquely employ Legendre moments (LM), Zernike moments (ZM), circularity and
a genetic algorithm (GA) to advance a computer-based vision system, and we task it to identify four cell
types used in virology: HeLa, Vero, BHK and PC3. By employing a k-nearest neighbor (kNN), multilayer
perceptron (MLP), Convolutional Neural Networks (CNN) classifiers and a GA-selected 9-vector candidate
comprising 4 ZMs, 4 LMs, and circularity, we provide adaptive system for deep machine learning. Our
approach provides avenue to measure the performances of two of the conventional and popular classifiers
(kNN and MLP) with a relatively recent classifier (CNN). We provide detailed mathematical treatments of
the image signatures for accessibility and reproducibility in computer vision. Our methods are unique in
biomedical applications. The performance of the kNN for k = 1, 2, and 3 using 10-fold cross-validation
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yielded accuracies of (83.59%, 82.03%, 81.25%) and (84.38%, 82.82%, 82.03%) for 8-class and 4-class
training sets, respectively, drawn from the same data while those of the MLP and CNN were 86% and
87.25% respectively. These results establish the feasibility of reliable automated cell identification, with
diverse applications in biological and biomedical research.

Keywords: Image analysis; machine learning; circularity; legendre moments; zernike moments; biomedical
cell images of cells; virology.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

1 Introduction
Recent advances in the live microscopy and imaging, such as high-throughput single-cell dynamic imaging[1],
super-resolution microscopy [2], and light-sheet-based fluorescence microscopy [3], have enabled the capture
of live-cell, tissue and whole-organism images with unprecedented spatial and temporal resolution. These tools
and approaches have contributed to a deeper basic understanding of cell structure and function, organismal
development, and microbiology, including virus-cell interactions. Although new insights have been chiefly
based on human visual interpretation of images, the rapidly expanding volume of imaging data creates a pressing
need for automation, employing computer-based vision systems that can do quantitative image analyses. To
date, automated image-based analysis of cells, or image cytometry [4], has been primarily developed and
implemented to identify cells and cell types ([5], [6], [7], [8], [9], [10]). For example, the passage of light
through a cell-sized object and diffuser was captured by a camera to produce its opto-biological signature (OBS)
in [8]. The OBS value of an object depends on optical characteristics of the object, including its morphology,
size, and index of refraction. Distributions of OBS values were used to determine mean, variance, skewness,
kurtosis, and entropy for different microscopic objects, which were then used to identify cells using a random
forest classfier. In another work by [9], blood cells were identified using global pattern averaging for feature
extraction and classification by an artificial neural network (ANN). To diagnose lung cancer an ANN based
on a two-level ensemble architecture was used to classify cell images prepared from patient biopsies [11]. In
this work level 1 categorized cells into binary outputs viz normal or cancerous, and level 2 further classified
the cancerous cells as adeno-, squamous , small or large cell carcinomas. Despite these advances, images of
cells are often subjected to translation, rotation or scaling [12], geometric transformations that adversely impact
classifier performance [13]. There have been recent works (such as [14], [15]) that address such problems
but down-to-earth implementation and description of the underlying algorithms (which of course will result in
reproducible research), are lacking. Further we provide a genetic algorithm (GA) to select subset of the original
feature space for improving the accuracy of the underlying machine learning model. From mathematical point
of view, we provide the detailed treatments and derivation of ZM and LM. A combination of a GA, amalgation
of LM, ZM, and circularity and detailed descrition of all the methods employed are considered to be valuable
and novel in this field.

Here we address these challenges by incorporating circularity, Legendre moments (LM), and Zernike moments
(ZM) into a k-nearest neighbor (kNN), MLP, and CNN classifiers, providing an adaptive computer-based vision
system for cell type identification. Moreover, we detail and demonstrate reproducible features of the 9-vector
candidate used in the training set, elucidating how LM and ZM contribute to the classifier performance. We
hope that inclusion of such details will foster reproducible advances in computed-based vision systems for cell
identification.

This paper is developed in several sections. In the next section we review the cell types widely used in the study
of virus-cell interactions, and we follow with materials and methods for cell culture and image acquisition. Then
we present the image descriptors used in this work, followed by our experimental design steps: a summary of
the image dataset, image pre-processing, segmentation, feature extraction, feature selection, and classification.
Finally, we discuss our results and indicate future directions for this research.
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2 Common Cell Types Used in Virology
In order to grow and study viruses in the laboratory, one needs to maintain live cell cultures, which serve as
hosts for virus infection. Cells that can be cultured indefinitely have typically been derived from tumors or
cancerous growths, which have lost or disabled their control of proliferation. Different culturable cell types are
susceptible to infection by different viruses. Here we provide an overview of four cell types commonly used
in virology: HeLa, Vero, BHK and PC3. Detailed information on these and many other cell types are available
from the American Tissue Culture Collection (ATCC) (https://www.atcc.org).

2.1 HeLa cells
HeLa cells are among the oldest and most widely used in scientific research, including virology ([16], [17]). The
HeLa cell line was derived from cervical cancer cells taken from Henrietta Lacks an African-American patient
who died of cancer in 1951 at the age of 31. Cells from her tumor were taken without her consent by scientist
George Gey, who later discovered that the cells could be kept alive if spent growth medium were replenished.
The remarkable history of Henrietta Lacks and the HeLa cell line have the subject of a best-selling book [18].
In addition to their widespread use in biomedical research, HeLa cells have also been used extensively to test
for potential human sensitivity to tape, glue, cosmetics and many other consumer products ([19], [20]).

2.2 Vero cells
Vero cells were derived from kidney epithelial tissues extracted from an African green monkey. The ’Vero’
lineage was originally developed in 1962 by Yasumura and Kawakita at Chiba University in Japan [21], and it
was named as an abbreviation of verda reno, meaning ”green kidney” in the Esperanto dialect. The cells have
many uses such as screening for bacterial toxins, serving as host cells for the culture of viruses (e.g., polio,
measles, influenza) and viral vaccine production, as well as for the culture of parasites such as trypanosomatids.
The Vero cell lineage can be replicated through many cycles of division without becoming senescent. The cells
have an abnormal number of chromosomes, a condition known as aneuploidy[22].

2.3 BHK cells
Baby hamster kidney (BHK or BHK-21) fibroblasts are an adherent cell line widely used in molecular biology.
The cell line was derived in 1961 from the kidney of a baby Syrian hamster. BHK cells are susceptible to
infection by many viruses, including human adenovirus D, reovirus 3, and vesicular stomatitis virus. This cell
line has been utilized as a host for transformation with expression vectors containing selectable and amplifiable
marker DNAs. They lack an intact innate immune response, so virus infections of BHK cells can produce robust
yields of progeny virus [23].

2.4 PC3 cells
Human prostate cancer (PC3) cells are widely used in prostate cancer research. They were established in 1979
from the bone metastasis of prostate cancer in a 62-year-old Caucasian male. They have been particularly
valuable in biomedical research to investigate biochemical changes in advanced prostatic cancer cells and in
drug testing for potential therapeutic treatments ([24], [25], [26], [27]). Further, PC3 cells are being used to
create human tumors in mice, which provide a model for the human tumor development within the context of
a living host [28]. Finally, PC3 cells maintain an active innate immune response, making them useful to study
how cellular immune signaling activates to suppress viral growth and spread ([29], [30]).
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Fig. 1. A sample of both BF and DAPI versions for HeLa, PC3, BHK, & Vero cells

3 Materials and Methods (Virology Laboratory)

3.1 Cell culture
PC3 cells (described above) were obtained from ATCC (Manassas, VA, CRL-1435) and cultured in RPMI
1640 (Gibco) with 10% fetal bovine serum (FBS, Atlanta Biologicals). Baby hamster kidney (BHK-21), HeLa
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(ATCC CRL-1958), and Vero (ATCC CCL-81) cells were cultured in Eagle’s minimum essential medium
(EMEM, CellGro) with 10% FBS and 2mM Glutamax I (Gibco) at 37◦ and 5% CO2. Cells were stained
with Hoechst 33342 (AnaSpec Inc. Cat 83218) diluted 1:20,000 in 2% FBS MEM for 1 hour before imaging.

3.2 Imaging
Imaging was done on a Nikon Eclipse TE300 inverted microscope equipped with an EXi Aqua CCD camera
(QImaging, Surrey, BC, Canada). Illumination for imaging the Hoechst stain was provided by a PhotoFluor
(Chroma, Bellows Falls, VT): the excitation filter, emission filter, and multichroic mirror used in this work
were from the Sedat Quad set 86000v2 (Chroma). Illumination for the phase contrast images was provided
by a Nikon TE-PS100. Images were obtained through a Nikon Plan Fluor 10x, 0.30 NA Objective. A digital
camera attached to a microscope enables the division of the field view into a grid of pixels. The intensity of
the light absorbed is numerically quantified as pixel values. Computers work with these digital images which
themselves, are grid of numbers indicating the luminous intensity. Image analysis are purposely applied to these
images to transform them into measurements of biological relevance such as cardinality of cells, the texture and
color of cells, etc, in a given image.

4 Image Descriptors
4.1 Circularity
Circularity was used as one of the image signatures in this work. Circularity or compactness is defined as a
measure of similarity between a 2D shape and a circle. In other words, circularity defines the degree to which a
shape differs from a perfect circle. It is the ratio between the quantity 4πa (a being the area of the cell’s image)
and the square of its perimeter p . It is given as

Circularity =
4πa
p2 =

p2

4πa
(4.1)

The circularity of a circle is 1 (i.e 4πa
p2 = 4π.πr2

(2πr)2 = 1). The comparision of a given shape with a circle is a
measure of both compactness or circularity. The compactness (circularity) is not only invariant to translation
and rotation but also to scaling [31]. Many cells look circular in nature and thus, the image of such could be
described by circularity.

4.2 Image moments
Other image signatures used in this work are image moments which are Zernike moments (ZM) and Legendre
moments(LM). Image moments are global region-based descriptors for shape and is synonymous to combination
of area, compactness, irregularity, and higher order descriptors together [13]. Moments are good image descriptors
for characterizing smoothness and regularity of images. The digital images used in this study could be defined
as a 2D light intensity function , say, f (x,y), where x and y are the spatial coordinates of the image and f
denotes the brightness or gray level at the point (x,y). If the image is generated from a physical scenario, then
the intensity values of such image are proportional to energy radiated by the physical source. Therefore, f (x,y)
is always assumed to be nonzero and finite as given by the inequality 0 < f (x,y) < ∞. An image moment of
microscopic cell is defined as the integration of an image function, say, f (x,y), with a region-defined polynomial
basis ([32], [33]). The region here is defined as the area where that image is valid. Example of such region is a
2D cartesian plane or image xy-space. From ([34], [35]), the general moment Mpq of any image f (x,y) of order
p+q, where p > 0,q > 0, is defined as:

Mpq =
∫ ∫

D
polpq(x,y) f (x,y)dxdy (4.2)

where polpq(x,y), i = 1(1)p, j = 1(1)q are polynomials basis functions defined on domain D.
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4.2.1 Legendre moments

Legendre moments (LMs) are based on the Legendre polynomial (LP) ([12], [36], [37]). The LPs themselves
are the everywhere regular solutions of Legendre’s equation (Eq 4.3),

(1− x2)u′′−2xu′+n(n+1)u = 0,n = 0,1,2, ... (4.3)

which is a class of 2nd order linear ordinary differential equation (ODE).

The nth order LP is defined by

Pn(x) =
K

∑
m=0

an−2mxn−2m =
K

∑
m=0

(−1)m (2n−2m)!
2nm!(n−m)!(n−2m)!

xn−2m, K =
n
2

or K =
n−1

2
(4.4)

The (m+n)th order of Legendre moment for a given image of intensity f (x,y) defined on the square [−1,1]×
[−1,1] is

Lm,n = Lmn =
(2m+1)(2n+1)

4

+1∫
−1

+1∫
−1

Pm(x)Pn(y) f (x,y)dxdy (4.5)

where m,n = 0,1,2, ....

The microscopic images used were all rectangular. The LM for digital images in a square domain N×N are
given as Eq 4.6. The images were all scaled to be in the region −1 ≤ x,y ≤ 1. As the order of the polynomial
increases, the precision required to describe the given object also increases. The LM can easily be computed
from the conventional moments and the well-defined polynomial coefficients. Teague has demonstrated that
higher order moments (greater than three) have significant information and may be necessary to usefully
characterize an image for a given application [38].

Lm,n = Lmn =
(2m+1)(2n+1)

(N−1)2

N

∑
i=1

N

∑
j=1

Pm(xi)Pn(y j) f (xi,y j)dxdy (4.6)

where

xi =
2i−N−1

N−1
(4.7)

and

y j =
2 j−N−1

N−1
(4.8)

Using the orthogonality property of LM, a given image can be reconstructed from a finite number of moments
of order ranging up to (N,N) and this is expressible as Eq 4.9.

f̄ (x,y)≈
N

∑
i=0

N

∑
j=0

Pi(x)Pj(y)Li j (4.9)

All the ideas adopted from section 4.2.1 have been put together as a complete algorithm (Algorithm 1) which
will be used later in feature extraction (see section 5.4).

4.2.2 Zernike moment

The Zernike moments(ZM) have been defined as a set of complete complex orthogonal basis functions that are
square integrable and defined over the unit disk (see Fig. 2). An open disk around a given point, say, x in a

6



Babatunde et al.; JAMCS, 23(1): 1-25, 2017; Article no.JAMCS.34357

Algorithm 1 Computation of Legendre Moments
1: procedure COMPUTELEGENDREMOMENTS()
2: Input image f (xi,y j) , i = 1(1)M, j = 1(1)N
3: Normalize f (x,y)
4: Compute ∆xi =

2
M ,∆y j =

2
N

5: for i = 1(1)M
6: for j = 1(1)N
7: xi

∗ 7→ −1+(i− 1
2 )∆xi

8: y j
∗ 7→ −1+( j− 1

2 )∆y j

9: Lm,n 7→ (2m+1)(2n+1)
4

+1∫
−1

+1∫
−1

Pm(xi
∗)Pn(y j

∗) f (xi
∗,y j

∗)dxdy

10: Endfor.
11: Endfor
12: Output Lm,n
13: end procedure

plane is the set of all points in the plane whose distance from x is less than 1 (see Eq 4.10). For a closed disk,
the distance from x is less than or equal to ρ where (ρ = 1 as shown in Eq 4.11).

D(x) = {y ∈ R : ∥x− y∥< ρ} (4.10)

D̄(x) = {y ∈ R : ∥x− y∥ ≤ ρ} (4.11)

Radial moments are general defined on a closed disks and as such, there is a strong connections between radial
Zernike moments and radial moments. The radial moments of order p with repetition q are defined as:

Dpq =
∫ 2π

θ=0

∫ ∞

r=0
rpe−iqθ f (r,θ)rdrdθ , i =

√
−1, p = 0,1,2, ...,∞ and q ∈ Z+. (4.12)

ZM are orthogonal moment based on Zernike polynomials. Orthogonality here implies that there is no redundancy
or overlapping of information between the moments. Thus moments are uniquely quantified based on their
orders ([34], [39]). The distinguishing feature of ZM is the invariance of its magnitude with respect to rotation.
If we are given the ordered pair (m,n) which represents the order of the Zernike polynomial and the multiplicity
of its phase angle, then the Zernike moment, Znm for any given sample image { f (xi,y j) : 1≤ i≤M,1≤ j≤N},
can be calculated as Equations (4.13) or (4.14)

Znm =
n+1

π

∫ ∫
D

f (x,y)V ∗nm(x,y)dxdy =
n+1

π

M

∑
x

N

∑
y

V ∗nm(x,y) f (x,y) (4.13)

where x2 + y2 ≤ 1, and m = 0,1,2,3, ...∞. The m defines the order of the Zernike Polynomial while n which is
either negative or positive, represents the multiplicity of the phase angles in ZM.

Znm =
n+1

π

2π∫
0

1∫
0

f (ρ ,θ)Rnm(ρ)e−imθ ρdρdθ (4.14)

Vnm(ρ ,θ) = Rnm(ρ)eimθ ,θ ≤ 1 (4.15)

Vnm(ρ ,θ) = Rnm(ρ)eimθ ,θ ≤ 1 (4.16)

where
ρ =

√
x2 + y2,θ = arctan(

y
x
) (4.17)
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are the image pixel radial vector and θ is the angle between it and x-axis respectively

Rnm(ρ) =
(n−|m|)

2

∑
a=0

(−1)a (n−a)!

a!( (n+|m|)2 −a)!( (n−|m|)2 −a)!
ρn−2a (4.18)

ZM are related to radial moments shown in Eq 4.12 as :

Zpq = λp

p

∑
k=q

RpqDpq, λp =
p+1

π
(4.19)

The Rnm is the Zernike radial basis polynomial. The following conditions must be satisfied:

(a)n ∈ Z+

(b)n−|m| is even

(c)|m| ≤ n

(d)
2π∫
0

1∫
0

V ∗nm(ρ ,θ)ρdρdθ =
π

n+1
δnpδmq,δzv =

{
1 z = v,
0, otherwise

(4.20)

In a more compact form, Zernike basis functions are defined with an order m and a repetition n over D =
{(m,n)| 0≤ m≤ ∞, |n| ≤ m, |m−n|= even} and a notable numerical property of Zernike polynomial is that
they are always in the range −1 to +1 as given in the following expression:

|Zm
n (ρ ,θ)|= |Znm(ρ ,θ)| ≤ 1 (4.21)

A notable fact to also know is that one ZM is a complex number that contains two different values: magnitude
or amplitude and phase angle but the proper way of applying ZM is to use the magnitude as it is inherently
invariant to rotation.

The ROI is mapped to the unit disc (using Eq 4.17) through polar coordinates, where the center of the ROI is
the origin of the unit disk. The conversion from rectangular to polar coordinates is done through Eq (4.17). The
coordinates are then described by the length of the vector from the origin of the disk to the coordinate point ρ ,
and the angle from the x-axis, to the vector ρ , (the polar radius). The polar angle is represented as θ . The pixels
falling outside the unit disc are not used in the calculation. The translation invariance is achieved by moving
the centroid of the ROI to the origin of the disk and this eventually causes m01 = m10 = 0. The centroid of the
ROI is given by the coordinates (x̄, ȳ) where

x̄ =
m10

m00
, ȳ =

m01

m00
(4.22)

The scale invariance for ZM is achieved through normalization of the image so that the total area of the
foreground pixels is of predetermined value, say, β . If the scaled version of the image f (x,y) is represented as
f (x/α,y/α), the regular moment mpq of f (x,y) and m1

pq of f (x/α,y/α) are related by:

m1
pq =

∫
x

∫
y

xpyq f (
x
α
,

y
α
)dxdy (4.23)

=
∫

x

∫
y

α p+q+2xpyq f (x,y)α2dxdy (4.24)

= α p+q+2
∫

x

∫
y

f (x,y)dxdy (4.25)

= α p+q+2mpq (4.26)
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The aim here is to have m1
00 = β and so, let

α =

√
β

m00
(4.27)

and then substitute for α in m1
00 to have m1

00 = α2m00 = β . Therefore, translation and scaling invariance is
achieved through the formula in Equation 4.28.

g(x,y) = f
( x

α
+ x̄,

y
α
+ ȳ
)

(4.28)

where

α =

√
β

m00
(4.29)

Algorithm 2 shows the pseudocode adopted for computing the ZM. The pseudocode was based on all the
equations in section 4.2.2.

In a similar way to LM in section 4.2.1, the reconstruction of the pattern or image can be expressed as the sum
of every Zernike basis functions weighted by the corresponding moments (of order, say, N):

f̄ (x,y) =
N

∑
(i, j=0)

N

∑
(i, j=0)

Zi jVi j(x,y) (4.30)

where Zi j and Vi j are as given in Algorithm 2.

Algorithm 2 Computation of Zernike Moments
1: procedure COMPUTEZERNIKEMOMENTS()
2: Input Nmax, image f (xi,y j), , i = 1(1)M, j = 1(1)N
3: Normalize f (x,y)
4: Znm = 0
5: for x = 0 to 1
6: for y = 0 to x
7: for n = 0 to Nmax
8: Compute [Rn0,Rn1, ...,Rnm] using Equation 4.18
9: Endfor

10: Endfor
11: Endfor
12: for m = 0 to n
13: Compute V (ρ(x,y),θ) using Equation 4.16.
14: Znm = Znm +Rnm ∗V (ρ(x,y),θ)
15: Endfor
16: Output Znm
17: end procedure

9
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Fig. 2. Conversion from rectangular to polar coordinates

Fig. 3. Invariant property of ZM. Here, set of three images of HeLa, BHK and PC3 respectively were
subjected to rotation, scaling and translation. The ZM descriptors extracted from these images

(represented as A) are appromixately the same, showing invariant property of ZM- a highly desirable
factor in machine learning or pattern recognition

5 Design of Computer-based Vision System
The description of the computer-based vision system developed in this work is diagramatized in Fig.4. The
choice of classification model is the kNN. The kNN was chosen because it is both simple and easy to implement.
All algorithms in this work were implemented completely in MATLAB programming language. The performance
of the kNN is benchmarked with two other (standard) classifiers.

5.1 Image dataset
The dataset in this work comprised of microscopic images of the HeLa, PC3, BHK and Vero cells. These four
cells were plated at 4 densities 1, 2, 3, 4 (1-high, 4-low) and stained with Hoechst. Bright Field (BF) and DAPI

10
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images were taken. A DAPI (4
′
, 6-diamidino-2-phenylindole) is a fluorescent stain that binds strongly to A-T

rich regions in DNA. It is used extensively in fluorescence microscopy. It can be used to stain live and fixed
cells because it can pass through an intact cell membrane [40]. A Bright-field (BF) microscopy is the simplest
of all the optical microscopy illumination techniques. A sample illumination in BF microscopy is illuminated
from below and observed from above white light. The contrast in the sample is caused by absorbance of some
of the transmitted light in dense areas of the sample.The name BF is adopted from the typical appearance of a
bright-field microscopy image which looks like a dark sample on a bright background ([41], [42]). There were
40 replicates (BF and DAPI) acquired for each cell type and density combination for a total samples with 1280
images. The images are stored in folders labeled with the cell type and subfolders that identify the density.

Fig. 4. Research Methodology for image-based identification of living cells [43]
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5.2 Image pre-processing
The images in the dataset were all in .tiff format and each with dimension 1392×1040 pixesl having bit depth
of 96 dpi for both horizontal and vertical resolution. The size of each image was 2.77 MB. The original images
could not be seen with ordinary image display function. The entire images in the dataset were all thus, subjected
to contrast adjustment before feature extraction and before each could be seen properly.

5.3 Image segmentation
After the pre-processing steps above the entire images in the dataset were further binarized and segmented to
aid the next step wich is to extract required features from the images. Otsu thresholding was used to separate the
foreground pixels from the background pixels. The image segmentation made the feature extraction easier to
carry out since the images were then in the required format needed for the computation of the image descriptors
(or image features) which are circularity, LM, and ZM.

5.4 Feature extraction
The image descriptors employed in this work are circularity, Legendre Moments (LM), and Zernike Moments
(ZM). The rational for combining such features is due to the simplity and effectiveness of the circularity and the
affine nature of both LM and ZM which have been established in some literatures [34]. The LM and ZM were
extracted using Algorithms 1 & 2 while the circularity was extracted using Equation 4.1. The selected features
are shown in Fig. 6. The figure shows the 9-vector candidate in each row which represents circularity, 4 LM
and 4 ZM extracted from each image in the dataset.

5.5 Feature selection
Feature selection is often needed in building machine model as all the available features might not contribute to
the performance (accuracy improvement) of the system. Thus, feature selection is done prior to classification.
Feature subset selection (FSS) is an operator Fs or a map from an m-dimensional feature space (input space) to
n-dimensional feature space (output) given in mapping,

Fs : Rr×m 7→ Rr×n (5.1)

where m ≥ n and m,n ∈ Z+, Rr×m is any database or matrix containing the original feature set having r
instances or observation, Rr×n is the reduced feature set containing r observations in the subset selection. A
GA was employed to select the best features from the original feature set. GA iteratively employ the use of one
population of chromosomes (solution candidates) to get a new population using a method of natural selection
combined with genetic functionals such as crossover and mutation (immitating Charles Darwin evolution
principles of reproduction, genetic recombination, and the survival of the fittest ([34]). The parameters
associated with the GA here are shown in Fig. 5a. Each chromosome (shown in Fig. 5b) is a binary string
with gene value ’1’ indicates the particular feature indexed by the position of the ’1’ is selected. If it is ’0’,
the feature is not selected for evaluation of the chromosome. The chromosomes are the encoded bit strings
represeting the features. As the GA iterates, the chromosomes in the current population are evaluated and
ranked according to their fitnessess from the kNN-based classification error. As shown in Fig. 3, the best
chromosome reports the best feature set.

Fitness =
α

No−Ns
(5.2)

where

1. α = kNN error.

2. No = cardinality of the original feature set
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3. Ns = cardinality of the selected features.

The expression LM(nx,ny) is assumed to represent Legendre moment of orders nx and ny in x and y spatial
components of the images while the expression ZM(m,n) is assumed to represent Zernike moment of polynomial
order m and phase angle multiplicity n. The original features or image descriptors (signatures) extracted from
the image dataset were all 81 in numbers. The GA reduced this to a nine-vector features were {circularity,
LM(2,1),LM(2,3),LM(3,2),LM(4,2),ZM(2,−2),ZM(4,2),
ZM(5,3),ZM(6,4)}.

Fig. 5. GA Parameters and Flowchart [43]
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Fig. 6. Mean of circularity, Legendre Moments (LM) & Zernike Moments (ZM) across the cell classes.
The columns represent the nine-feature vector extracted from the images in the dataset. The numbers

1,2,3,4 in the figure represent the four classes of cells used (viz class1 (HeLa), class2 (PC3), class3
(BHK), class4 (Vero) ). The column names F1 through F9 represents the mean of circularity, LM and

ZM. The mean values for the extracted features across all the classes are different showing their
applicability for classification purpose

5.6 Classification model

5.6.1 k Nearest neighbor

The kNN algorithm is useful for classification not requiring model building, and hence, it is called ”instance-
based learning”. It solves the classification problem by looking for the shortest distance between the test data
and training sets in the feature space [44]. The distance is generally computed in a Pythagorean sense (by
finding the square root of the sum of differences) and that is what was adopted in this work. We represent our
training set as x below:

X = {xi j} (5.3)

Each xi j (i = 1 (1) 1280, j = 1(1)9) is a scalar containing a feature extracted from each of the images. The kNN
algorithm computes Euclidean distance between the test data xtest and the training set and then find the nearest
point (shortest distance) from the training set to the test set as:

D(xtest ,x) =

√√√√ M

∑
j=1

(xtest − xi j)2 (5.4)

As usual the kNN classifier considers only the k nearest neighbors (local information) denoted by xi j1, ...,xi jk
as the member(s) of the set (a normed linear space).
A normed linear space, say, kNNSpace (E,∥ . ∥) is a metric space that is endowed with the following properties:

1. ∥ x ∥≥ 0 for all x ∈ E and ∥ x ∥= 0 if and only if x = 0

2. ∥ αx ∥= |α| ∥ x ∥ for all x ∈ E and α ∈ R.

3. ∥ x+ y ∥≤∥ x ∥+ ∥ y ∥ for all x ∈ E (triangular inequality)

kNNSpace = {x j|d(xtest ,xi j)≤ d(x,xi)} (5.5)

The kNN rules involve classifying a test sample, say, xtest by assigning it the most frequently represented among
the k nearest samples.
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Since k = 1,2,3 in this research, the kNN count each category m in the class information (accumulated as
count(xm)) using k = 1,2,3 Nearest Neighbors and then report classification results based on the expression

argmax(count(xm)) (5.6)

subject to
M

∑
i=1

count(xm) = class (5.7)

where class = {1(1)Nc}, with Nc ∈ Z+, the number of classes in the training set. Algorithm 3 summarizes the
operation of the KNN used. The classification accuracy of the kNN algorithm is sensitive to the value of k (see
Figs. 8,9,10,11,12,13 section 6).

Algorithm 3 Algorithm for k Nearest Neighbor
1: procedure COMPUTEKNN()
2: Input T RAININGSET = {xi,ci}, x = feature set, i = 1(1)M, M = number of observations

in the training set, c = class information, j = 1(2)Nc, Nc = number of classess available and test
image xtest .

3: Assign pi←{xi,ci}, i = 1(1)M,ci ∈ Nc where pi = posteriories of xi.

4: Compute D(xtest ,xi) =

√
M
∑

m=1
(xtest − xim)2

5: sort pi based on D.
6: Select the first k points from the sorted list
7: Assign ClassLabel← p∗ if c∗ = argmax(count(xi))
8: end procedure

5.6.2 Multilayer perceptron (MLP)
The second classifier employed in this work is MLP which is typical feed-forward artificial neural network
model with 3 layers which are input, hidden, and output layers with multiple neurons. The MLP can be
represented as Eq. 5.8.

yi = f

[
N

∑
k=1

ωkg

(
J

∑
j=1

(ω jx j +ϕ j)

)
+ εk

]
(5.8)

where N = Number of hidden-layer neurons, ω j = synaptic weights connecting the input and hidden layer
neurons, ωk = weights connecting the biases in the hidden and output layers, while f (.) and g(.) are respectively
linear and sigmoid functions [45]. Further details about MLP may be found in [46], [47], [48].

5.6.3 Convolutional neural metworks (CNN)
We also employed a relatively new classifier (a convolutional neural network(CNN or ConvNet)) which is suited
for deep machine learning. CNN is a variation of MLP. In CNN the neuronal connectivity pattern is inpired by
the organization of the animal visual cortex. CNN is made up of neurons that have weights and biases that are
trainable. Each neuron receives inputs (most commonly images), performs a dot product and optionally follows
it with a non-linear function [49], [50]. Mathematically, a convolution operation involves shift, multiplication
and sum operations. CNN is alternatively known as shift invariant or space invariant ANN because of its weights
architecture and translation invariance characteristics. The CNN architectures assumes that the input data are
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images. The assumption makes the forward function more efficient to implement and vastly reduce the amount
of parameters in the network [49]. The ConvNet employed in this work consists of multiple layers, such as
convolutional layers, max-pooling or average-pooling layers, and fully-connected layers. The neurons in each
layer of a CNN are arranged in a 3-D data structure, mapping a 3-D input (i.e rgb image) into a 3-D output.
With biomedical cell images (HeLa, Vero, BHK and PC3), the first layer (input layer) holds the images as 3-D
inputs, with the dimensions being height, width, and color channels of the image. The neurons in the first
convolutional layer connect to the regions of the cell images and map them into a 3-D output. The hidden units
(neurons) in each layer learn nonlinear combinations of the original inputs, which is called feature extration.
The features learned from one layer are known as activations and fed as inputs for the next layer. Finally, the
learned features become the inputs to the classifier or the regression function at the end of the network [51].

Algorithm 4 k-fold Cross Validation for Classifion Model
1: procedure KFOLDCLASSIFIER(DATASET, K)
2: Input DataSet and the class information.
3: Randomly partition DataSet into K folds (disjoint sets) using the class information such as

X = X1 +X2, where (X ,ci) ∈ RD×{1,2,3, ...,4(8)}
4: DO counter 7→ counter + 1
5: Remove k and train Classifier using feature from all classes except class k
6: Use X2 for validation and X1 for training
7: Compute ErrorkNN on the validation set X2 as

ErrorClassi f ier(X) =Classi f ier(X2)

j = number of datapoints in the partition k
8: UNTIL counter = K

CVError =
1
N

N

∑
j=1

ErrorClassi f ier

9: end procedure

6 Results and Discussion

The work here was based on identification of four cells that are commonly employed in virology laboratries.
These cells include BHK, PC3, HeLa and Vero cells. In this section, we present two metrics commonly used in
evaluating machine learning models. We describe both confusion matrix and receiver operating characteristics.
It should be noted that this work also tested the effect of having increased class information on the performance
of the learning machine. As such we used two types of training sets. The first training set had 4 classes
representing HeLa, BHK, PC3 and Vero cells, while the second training set had 8 classes representing HeLa
(DAPI and BF version), BHK (DAPI and BF version), PC3 (DAPI and BF version) and Vero (DAPI and BF
version). kFold CV (see 4 was employed to eliminate biasness in model prunning. The classification output
(result image) for both were the same but there was a little increase in accuracy for 4-classes training set than
8-classes training set. We also benchmarked the kNN classifier in this work against two other models namely
MLP and CNN. The results shows that CNN outperformed the other two classifiers. The kNN is also close in
terms of the accuracy. Although, kNN ranked third (or least), we have been able to show that kNN could be
made to perform excellently well with proper enviromental settings such as appropriate image signatures and
manifold reduction techniques such as GA.
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6.1 Confusion matrices
In this section, the performance of our classification model is analysed using confusion matrices (see Figs.
8,9,10,11,12,13). A confusion matrix is a tabular tool or matrix display of the instances from the training
set that were correctly and incorrectly predicted by classifiers in machine learning. It can be represented
as ConfuseMatrix ∈ Rc×c, a square matrix whose (backward) diagonal elements depicts the actual number
of classes that are rightfully classified and c is the number of classes in the dataset. A confusion matrix is
also called contigency table or error matrix since its all about visualising the performance of the learning
algorithm. A confusion matrix Mi j containing c(i, j) shows overall classification with regards to the whole
(original training set). The diagonal entries show a metric representing number of images in each class (i.e
BHK, PC3, HeLa and vero cell) that were correctly classified. In other words, it shows the number of class i
that were correctly classified as j. Using the numbers shown in Figs. 8,9,10,11,12,13, we define an entry in
ConfuseMatrix as the number of observations of cell image of class ci that the classifier (kNN) predicts to be of
class c j, where i = j = 1(1)4,8. The classification accuracies in this work were computed from the confusion
matrix M based on the following formular:

Accuracy =
trace(M)

sum(M)
(6.1)

where trace(M) is the sum of all the entries in the backward diagonal of the matrix M and sum(M) is the sum
of all the elements or entries of the matrix M.

1. 8-Classes Training Set
The confusion matrices for the 8-classes training set and kNN {k = 1, 2, 3} are shown in Figs. 8,9 and
10. The backward diagonal colored in pink shows the numbers {14, 11, 13, 15, 15, 11, 16, 12}, {14,
11, 12, 15, 15, 10, 14, 14} & {15, 12, 14, 15, 14, 9, 14, 11} for {C1,C2,C3,C4,C5,C6,C7,C8} for the
kNN Classifier {k = 1, 2, 3}. These diagonal entries are the correct classification (or the true positives).
In Fig. 8, it’s shown that the system predicted 1 C5 and 1 C7 for C1. So for 16 actual classes for C1, only
14 were predicted correctly. For testing this learning machine, only 18 instances of unknown sample of
each classes were used. The classes {Ci, i = 1(1)8} represents both DAPI and BF version of each of
HeLa, PC3, BHK, and Vero cells. It’s to be noted that both DAPI and BF images represents a single
cell type. So a display showing HeLa cell (DAPI) and that showing HeLA cell (BF) are all showing
the same cell type. A variation in the classification display is to show to the non-expert in microscopy
imaging that the images (DAPI and BF) were taken under different illumination and condition. Another
objective of including versions for DAPI and BF is to see the effect of increasing the number of class
information upon the performance of the classifier. The classification accuracies for kNN, {k = 1,2,3}
were shown to be 83.59%,82.25%,82.03%. MLP and CNN reported accuracies of 86% and 87.25%
respectively. These numbers are computable using the Formular 6.1.

2. 4-Classes Training Set
The confusion matrices for the 4-classes training set and kNN {k = 1, 2, 3} are shown in Figs. 11,12 and
13. The classification accuracies were shown to be { 84.38%,82.81%,82.03%}. This 4-class training
set were based on 32 samples of the four classess given. The diagonal entries for the three matrices
from kNN , {k = 1,2,3} were {26, 26, 29, 27}, {22, 30, 27, 27}, & {24, 26, 26, 29}. The classification
accuracies were computed based on the same formular in Equation 6.1. Out 32 samples from C1 class
shown in Fig. 11 , 1 sample, 2 samples, and 3 samples were mispredicted for classes 2, 3, and 4
respectively. The same explaination applies to Figs. 12 and 13.

6.2 Receiver operating characteristics (ROC)
The receiver operating characteristic is a performance metric used to check the quality of classifiers(learning
machine models). For each class of a classifier, threshold values across the interval [0,1] are applied to outputs.
For each threshold, two values are calculated, the True Positive Ratio (the number of outputs greater or equal to
the threshold, divided by the number of one targets), and the False Positive Ratio (the number of outputs greater
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than the threshold, divided by the number of zero targets). Thus, the ROC (for any classifier) is the graphical
plot of True Positive Rate (TPR) against False Positive Rate (FPR) or sensitivity against (1-specificity). TPR is
the same thing as sensitivity and FPR + specivicity = 1. The ROCs for the classifier used in this work is shown
in Fig. 14. In the ROCs figure shown, TPR of all classes is ploted against the FPR of all classes. The varying
parameters along each ROC is TPR and FPR of all the number of pattern (instances) in each class. The the
number of observations (instances) for each image of the cells varies. The TPR of all ROC curves generated by
the kNN for the 4{8}-class training set all lie between 0.78 and 1. The average TPR for all the classes is 0.8325
while average FPR for all the classes is 0.0699. A perfect classifier should have (0, 1) for this ordered pair. The
same pair for the kNN has value {(0.0699, 0.8325)}. This indicates a good performance for the classification
model in this study. The metrics for the other two classifier are shown in Fig. 15.

Fig. 7. Image classification tool for cell cultures identification. The test cell was PC3. The classified cell
was correctly identified as PC3

Fig. 8. Confusion Matrix for 8-class Training set: Run1 (kNN, k = 1, Accuracy = 83.59%. Class 1 =
HeLa (BF), Class 2 = HeLa(DAPI), Class 3 = PC3 (BF), Class 4 = PC3 (DAPI), Class 5 = BHK (BF),

Class 6 = BHK (DAPI), Class = Vero (BF), Class 8 = Vero (DAPI)
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Fig. 9. Confusion Matrix for 8-class Training set: Run2 (kNN, k = 2, Accuracy = 82.03%. . Class 1 =
HeLa (BF), Class 2 = HeLa(DAPI), Class 3 = PC3 (BF), Class 4 = PC3 (DAPI), Class 5 = BHK (BF),

Class 6 = BHK (DAPI), Class = Vero (BF), Class 8 = Vero (DAPI))

Fig. 10. Confusion Matrix for 8-class Training set: Run3 (kNN, k = 3, Accuracy = 81.25%. Class 1 =
HeLa (BF), Class 2 = HeLa(DAPI), Class 3 = PC3 (BF), Class 4 = PC3 (DAPI), Class 5 = BHK (BF),

Class 6 = BHK (DAPI), Class = Vero (BF), Class 8 = Vero (DAPI))
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Fig. 11. Confusion Matrix for 4-class Training set: Run1 (kNN, k = 1, Accuracy = 84.38%. Class 1 =
HeLa, Class 2 = PC3, Class 3 = BHK, Class 4 = Vero)

Fig. 12. Confusion Matrix for 4-class Training set: Run2 (kNN, k = 2, Accuracy = 82.81% Class 1 =
HeLa, Class 2 = PC3, Class 3 = BHK, Class 4 = Vero)

Fig. 13. Confusion Matrix for 4-class Training set: Run3 (kNN, k = 3, Accuracy = 82.03% Class 1 =
HeLa, Class 2 = PC3, Class 3 = BHK, Class 4 = Vero)
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Fig. 14. Receiver Operating Chracteristics for our classification model

Fig. 15. Performance metric of the classifiers
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7 Conclusion and Future Directions
The main objective of this work was to develop an adaptive computer-based vision system to accurately identify
four cell types that are commonly employed in biomedical and virology laboratories. Extracted features were
circularity, LM and ZM. Some of images in the database were subjected to translation, scaling and rotation.
Our system was able to correctly classify the cell types with up to accuracies of 84.38%, 86%, 87.25% for
kNN, MLP and CNN respectively. Our approach could be extended to find cells undergoing mitosis, analyse
images of chromosome arrangement into karyograms, and classify chromosomal features in images, including
detection of genomic defects. Further, this work may be extended to classify the composition of cell mixtures
within a single microscopy image. Finally, image-based systems biology involves the combination of systematic
quantitative image data collection with spatiotemporal systems modelling ([52], [53]). These approaches may
enable the classification of cell behaviors that span spatial scales from molecular to cellular and to tissue level.
Inclusion of several segmentation techniques and filter-based image analysis would worth considering in the
future works.
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