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Abstract

We have two concepts of Douglas spaces and Landsberg spaces as generalizations of Berwald
spaces. S. Bacso [1] gave the definition of a weakly-Berwald space as another generalization of
Berwald spaces. In 1972, M. Matsumoto has introduced the concept of («, 8)-metric, which is a
Finsler meric, contstructed from a Riemannian metric and a differential 1-form. In this paper,
we study an important class of (a, 8)-metrics in the form L = a+ § + % + 5727 known as second
approximate Matsumoto metric on an n-dimensional manifold and get the conditions for such
metrics to be weakly-Berwald metrics, where a = /a;;5%y7 is a Riemannian metric and 8 = b;y’
is a 1-form. A Finsler space with an («, 8)-metric is a weakly-Berwald space, if and only if

B: = 9B™/dy™ is a 1-form. We show that it becomes a weakly Berwald space under some
geometric and algebraic conditions.
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1 Introduction

Let M™ be an n-dimensional differential manifold and let " = (M™, L) be an n-dimensional Finsler
space where L is a fundamental function. Let g;; = 8;0; L?/2 be the fundamental tensor, where the
symbol 9; means a%i and we define G; as

Gi={y"(8:0:L%) — &:L*} /4,
and G* = gYG; where the symbol 8; means % and (g%) is the inverse matrix of (g:;). The

coefficients ( ;-k, G?) of the Berwald connection BT are defined as G = 9;G* and G;-k = BkG;

A Berwald space is a Finsler space which satisfies the condition G?jk = 0, that is to say, whose
coefficients G?j of the Berwald connection are functions of the position (z') alone. Therefore the
equations y,G7;;, = 0 hold, so 2G* = Gl .y y® are homogeneous polynomials in (y") of degree two,
so DY = G'y’ — G’y* are homogeneous polynomials in (y*) of degree three. Then we can consider
the notions of Landsberg spaces and Douglas spaces as two generalizations of Berwald spaces. The
notion of weakly-Berwald spaces is the third generalization of Berwald spaces. Thus if a Finsler
space satisfies the condition G;; = 0, we call it a weakly-Berwald space.

The concept of an (a, 8)-metric on a Finsler space F* = (M™, L) was introduced by M. Matsumoto
in [2] and has been studied by many authors [3], [4], [5], [6]. Some important examples of («, 3)-
2

@
metric are Randers metric (L = a + ), Kropina metric | L = ? , generalized Kropina metric

m—+1
(L = %), (m # 0,—1), and Matsumoto metric (L = aa—_zﬁ) . The study of Finsler spaces with

these metrics has greatly contributed to the growth of Finsler geometry and its applications to the
theory of Relativity and allied areas.

Definition 1.1. A Finsler metric L(z,y) is called an (c, 8)-metric if L is a positively homogeneous
function of a and B of degree one, where o = a;;(2)y’y’ is a Riemannian metric and 8 = b; (x)y’
is a 1-form on M™.

S. Bacso [1] introduced the notion of weakly-Berwald space as another generalization of Berwald
spaces. IL-Yong Lee and Myung-Han Lee [7] have studied weakly Berwald spaces with special («, 3)-
metrics. In this paper we extend the study on weakly Berwald spaces with second approximate
Matsumoto metric.

Let F* = (M™, L) be a Finsler space of dimension n, and the domain of the fundamental metric
function L(z,y) is the set of TM \(0) of the non- zero tangent vectors. We assume that L is positive

1 0
and the fundamental metric tensor g;;(z,y) = §L%i>(j) (where (i) := ﬁ) is not necessarily positive
Yy

definite.
The equation of the (canonically parametrized) geodesics of F™ is given by

d?z?
dt?

) dx’ )
2 g = = °
+2G"(z,y) =0, <dt y),
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where

Gi _ 1 ir 56L72" _ aLZ
=29 \Y s " o )
The Berwald connection of the space is defined by its connection coefficients G;k(x, y) which can
be computed from G* according to the following formula:

Gi(z,y) = Gijy; Gor(m,y) = G-

Definition 1.2. A Finsler space is called Berwald space, if G;-k are functions of position alone, i.
e., Berwald connection BI is linear.

A Finsler space is called a weakly Berwald space if the (hv)-Ricci curvature tensor Gjr = 0. The
spray function G* of a Finsler space with an (o, 8)-metric are given by 2G* = ~&, + 2B*, where
%i-k stands for the Christoffel symbols in the associated Riemannian space (M", a).Then we have
G§ = ’yéj + B} and G;-k = ’y;k + B;-k, where @Bi = B;- and 6kB; = ;k Thus a Finsler space with
an («, B)-metric is a weakly-Berwald space, if and only if B;; = dB™/dy™ is a one-form.

Recently, S. Bacso and B. Szilagyi [1] gave an example for the weakly Berwald Finsler space, and
a sufficient condition for the existence of a weakly Berwald Finsler space of Kropina type was
also determined. Recently, S. Bacso and R. Yoshikawa [8] investigated the conditions for Randers
and Kropina spaces to be weakly-Berwald spaces. R. Yoshikawa and K. Okubo [9] obtained the
conditions for generalized Kropina spaces and Matsumoto spaces to be weakly-Berwald spaces
and Berwald spaces. In [10], it has been shown under which condition a Finsler space with first
approximate Matsumoto metric becomes a weakly Berwald space. In this paper, first we discuss the
conditions for the Finsler space F™* with an («, 8)-metric to be a weakly-Berwald space and then we

find the conditions for Finsler space with second approximate Matsumoto metric L = a+8+ % + g—z
to be weakly-Berwald space.

2 Weakly-Berwald Space with Respect to (o, 5)-metric

In the present section, we deal with the condition that a Finsler space with an («a, 8)-metric be a
weakly-Berwald space.

Let F™ = (M™, L) be an n-dimensional Finsler space equipped with («, 8)-metric L(«, ), where
a = +/(ai; (2)yiy?) is a Riemannian metric and 8 = b;(z)y’ is a 1-form. In this paper, the symbol
(;) stands for h-covariant derivation with respect to the Riemannian connection in the associated
Riemannian space (M", &) and ~};, stands for the Christoffel symbols in the space (M™, a).

We use the following notations [8]

(a) b =a'"b,, b°> = a"bbs,
(0) 2rij = bisj + bjsi, 2855 = bisj — b,
(c) i =a'"rrj, s§=a"smj, i =bor}, 8;=bysj.
We now consider the function G*(x,y) of F™ with an (a, §)-metric. According to [11], they are

written in the form
2G™ = ~46 + 2B™,

Bm _ Efym + aLﬁ s'(r)n _ OlLaa C* (lym _ %b'm> , (21)

« L. Lo «

where we have put

" BLg « o afB(rooLa —2asoLg) o 2 2 2
E" =—— = = — 2.2
( (AN 2B Lo + ar?Low) Y. =b"a” = 37, (2.2)
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and , , )
oL oL 0°L 0°L 0°L
LO‘ = 4. L = a5 LQCX = a5 9 aB = 3 A Locaa = 5 3- 23
da’ 7T 0 da?’ 7" dadp da? (23)
Since Y4y = ’y;k(x)yjyk are homogeneous polynomials in (y) of degree two, it is obvious that

a Finsler space with an (a, 8)-metric is a Berwald space, if and only if B™ are homogeneous
polynomials in (y*) of degree two and Berwald connection BT is linear.

Differentiating (2.1) with respect to y™ and contracting m and n in the obtained equation, we have
m_ [ (BLs\ m  nBLs 4 (aLaa (By™ —a’b™ .
Bm—{am(aL 7 Om I. of C
aLaa A 1 m 1om A (&3 m * A O(Lﬁ m
- ok {am (a)y +Lon o, (B)b }c +am(La )
,BLQLﬁ - aLLaa A * m QQLaa A * m
— 7 m m . 2.4
+( aLLa (80)y sz (8C)b (2:4)

Since L = L(«, B) is a positively homogeneous function of @ and g of degree one, we have

Loo+ LB/B = L: Layao + Laﬁﬁ = Oa

LBaOl + Lﬁﬁﬂ = 07 Locaa + Laaﬁﬂ = —Laa-

Using the above relations and the homogeneity of (yi), we obtain the following equations

A ﬂLB mo__ BLB
Om (E) vt=—T (2.5)
o (Lo (By™ — ™\ A
a’”( La ) < aB ) = By (LeLoea +aLlalaaa = aLaa)’} (2.6)
{5m (é) y" + ééﬁ (%) } = a; (v +(-1)p8%), (2.7)

(6

) = 20", (2.8)
(0007) " = g (20" + 28 4202 L

aﬁ'yQL(mroo - 2a(ﬁ3L5 + 04272Laa)so) -

2BW (2628 Lo — 7' Lo — b0 L) ) (2.9)
. OfLﬂ OlzLLaaSO
B el = & Zraad0 2.1
0 ( La ) %= (L) (210
where
W = (rooLa — 2as0L3), Q2 = (8°La + @y’ Laa), (2 #0) (2.11)

Y = airy", s00 =0, b"s. =0, aijSi]‘ =0.
Substituting (2.2), (2.3), (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10) into (2.4), we get

. 1

B'=—— — _ _120%AC* + 2aLO’B LaLaa D E 2.12
m 2aL(ﬂLa)2Q2{ C" +2a 50+« (Croo + Dso + Ero)}, (2.12)
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where

A= (n+1)B°La(BLals — aLLaa) + oy’ L(a(Laa)?
—2LaLao — @LaLaaa),
B = a’LLaa,
C = B7* (=B*(La)® + 2b°a’LaLaa — &°v*(Laa)® + &y’ LaLaaa)
D =2a(8%(y* = B*)LaLs — @”B*y* LaLaa
—207*(v* + 26") LyLaa — @*7"(Laa)® = a7 LsLaaa),
E =2a°B°L.A. (2.13)

Summarizing up the above, we have the following

Theorem 2.1. The necessary and sufficient condition for a Finsler space F™ with an («, 8)-metric
to be a weakly-Berwald space is that G, = o, + By, and B;,; is a homogeneous polynomial in
(y™) of degree one, where B, is given by (2.12) and (2.13), provided that € # 0.

Lemma 2.2. If o = 0(mod, ), that is, a;;(z)y’y’ contains b;(x)y’ as a factor, then the dimension
n is equal to 2 and b? vanishes. In this case we have 1-form 6 = d;(x)y’ satisfying o® = 86 and
dib' = 2.

3 Finsler Space with Second Approximate Matsumoto
Metric

In the present section, we consider the condition that the Finsler space with second approximate
Matsumoto metric be a weakly-Berwlad space.

Let us consider a Finsler space F™ = (M", L) with second approximate Matsumoto metric

,82 3
Lie,f)=a+f+—+ 5. (3.1)

We now find the conditions for F™ with (3.1) to be a weakly-Berwald space. For F" with (3.1), we

have

a® —apf? —28% a? 4203 + 352
3 )

La = Lg = ’
o A a?
2 2
Lo = 20E30) 4 = SF(0L45) (5:2)
o o

Substituting (3.2) into (2.1), we get
B roo(e® — af® — 28%) — 2s0a?(a?® + 228 + 358%)
(0 —apf? = 28°%) + 2(b2a? — B2)(a + 3P)
(( (a® +2a8 4 36%) Bla+3p5) >ym (3.3)

2@+ a2+ af?+ 83 (a® —af?—23%)

_ o?(a+38) 5 ) 4 a?(a® + 228 +36%) .,
(a® — af? — 25°) (0% —ap? —28%) O
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Again, substituting (3.2) into (2.2), (2.11), and (2.13) in respective quantities, we obtain

A=(n+ 1)B—Z(a3 —af® —26°)(” - 6a°F% — 12076 — 15a8" — 128°)
+ 252 (b*a® — B°)(a® + &*B + af® + %) (a* 4+ 6a° 8 + B + 4a8° + 64%),
2
B = ﬁ(oH—BB)(a + B+ aB®+ %),
C= 5—2(1)2(12 - 5% ((4b2 —1)a® —120°a°8 — 2(4 — b*)a* B°
4(2b% + 5)a’® 8% + 3(366% — 1)a’B* + 1603° — 16,86),
D20 ( (1+2b%)a” 4+ 126’8 + 2(3b* — 8b* — 1)a°5?
- 2(331)2 + 1)a*B® + (36 — 41%)a*B*
+2(29 — 336%)a*B° + 82a8° + 7257),

E = ’34 ((1 +2b%)a’ + 6b%a° B — (2b° 4+ 4)a* B — 10(b° + 1)’ B?

—3(4b” — 1)a’B* + 1408° + 1656>, (3.4)

roo(a® — af? — 28°%) — 2a%s0(a® + 208 + 35%)

W = o8

)

0= g( (1 +20°) 4 2b°0°B — 3a3° 853>,
o @ <r00 a® —aB? — 2,63) — 25002 (a® 4+ 208 + 3ﬁ2))
28 —af? —283%) +2(b%? - g2)(a+36) )’
B a(a® 4 2a6 + 38%)

2(a® + 2B + af? + B3)
roo(a® — afB?® — 28%) — 2s0a®(a® + 228 + 35%)
(et et )

Substituting (3.4) into (2.12), we get

QB.:Z <(1+262)2 15/B+a 0614/8 +a Of13ﬂ 12 472@40611/85
+2a50'°8° + 2a6a” 87 + 2a70°B° + asa” B + aga’ B + a10a’ B!

+ana’ B 4+40(19 — 266%)a’ B + 12(83 — 32b°)’ B 4 70408"° + 256616>

— 700 (12b4a15 + a12a14ﬁ +4 2620,13@1352 4+ a14a1253 4+ 2a15a11ﬁ4 + 2a16a10ﬁ5
+ 2a170” 8% + 2a180°B" + 4a100” 8% + a200°B° + 2a210° B + a2’ M

+ 2a030° "% + 2a240° B — 16008 — 192515>
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where

— 250 (CL250115ﬁ2 + 2a260* 8% + agra'® B + 2a08a'? B* 4 2a90a™ B°
+ 2a300"B° + 2a310° 87 4 6a320°B° + azza” B + 2a340° B + azsa’BH

+ 6agsa’B? — 1384082 — 864a2/314>

— 27 <2(1 +2b%)a® B + 4(7Tb? + 2)at* B + 2(28b% — 1)at?s?

—8(b” + 7)a'? B — 4(44b% 4 29)a" 8% — 12(32b° — 3)a'?°
+ 4(—46b" + 63)a”B° + 4(50b° 4 87)a®B® + 2(334b° — 17)«x
)o’ B

)a’p°
+ 4(133b° — 30)a° B + 6(64b° — 95)a° B + 8(18b% — 91)a* B*?

— 6400°8" — 192a2ﬁ14) =0, (3.5)
ar = (28" +16b° 4+ 1), a2 = (56b" — 4b> — 7),
az = (8b* +112b° + 27), as = (88b" 4 1160° + 3),
as = (51 — 16b> — 152b%), as = (109 4 252b° — 92b%),
a7 = (33 4 464b° + 60b"), as = (428b* + 628b° — 355),
ag = (5320" — 240b° — 699), a10 = (384b" — 1140b° — 515),
a1 = (144b* — 1156b> + 105), a1z = (48b* + 8b* + 2b°n 4+ n + 1),
a1z = (220° — 10 + 3n), a1q = (80" — 1200° — 166°n — 11n — 17),
a1s = (78b* — 26b> — 40b°n — 8n — 1), a1 = (412b" — 50b°n + 11n + 79),
ar7 = (294b" — 17b° + 34b°n 4 44n + 168),
a1s = (—324b" — 2500 + 196b°n + 41n + 95),
arg = (—562b* + 87b% + 138b%n — 18n — 91),
azo = (1952b" 4 1356b° 4 3106°n — 247n — 835),
a1 = (—1320b" 4 164662 — 237b62n — 168n — 468),
as2 = (—1440b" + 2216b° — 840b°n + 201n — 557),
a3 = (10640 — 372b°n + 1560 — 33),
azs = (672b% — 144b°n + 361 — 16),
azs = (— 4b2—2b2n—n+1), Ao = (—8b2—5nb2—n+1),
asr = (—24b* — 960 — 4b°n + Tn + 11),
ass = (—120"* — 180b° + 40b°n + 17n + 11),
azo = (—555b* — 280b% + 142b%n + 23n + 63),
azo = (587b"b* — 3870 + 222b°n — 18n + 298),
az = (—334b* — 854b + 108b>n — 1051 + 467),
azs = (—12b* — 79b% — 88b>n — 29n + 193),
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azz = (72b7 5646 — 1386b°n — 117n + 13),
azs = (—214b> — 849b*n + 147n — 1903),
ass = (—312b% — 1188b%n + 603n + 631), ass = (—72b*n + 87n — 304).

Now we assume that F™ is a weakly Berwald space, then Br is hp(1). Since « is irrational in (y*),
the equation (3.5) is divided into two equations as follows,

BBl Fy + BrooGi + o’ B2 soHy + o 2ol = 0, (3.6)

aﬂBng + argoGa + OéSﬂSoHQ + chﬂrolg =0, (37)

where

F = 2a1a14 - 2a3a12B2 + 4a5a1054 + 4a7a856 + 2a9a6B8
+ 2a110" B0 + 24(83 — 32b%)a* B + 5128™,

Fy = 2a10™ + 2a20'28% — 4a4o¢1064 + daga®B% + 2a5a°3°
+ 2a100" 8% 4+ 80(19 — 26b%)a®B'? + 1408b"*,

G1 = —(a2aa™ 4 a140" 8% + 2a160"° B* + 2a150°B° + a200° B° + az2a’ B0
+ 2a240° 8" — 1928),

Gy = —2(61)40414 + b2a13a1252 + a15o¢10ﬁ4 + a17o¢856 + 2a19a668 + a21a4ﬁ
+ a23a2ﬁ12 . 80514),

10

Hi = —4(az60"® + a2 8% + az0a®B* + 3a320°° + azsaB° + 3az6a” 57
~ 4328,

Hy = —2(0256112 + 027611052 + 202961854 + 2a31a656 + a33064/38 + a35a2510
—13848'%),

I = —=8{(76* + 2)a'? — 2(b* + 7)a'’ % — 3(326” — 3)a°p*

+ (500% 4 87)a’B° + (133b° — 30)a’ 8% 4 2(186% — 91)a?B'0 — 4837},
I = —4{(1 +2b*)a'? + (286" — 1)a'?B% — 2(44b> 4 29)a®B"

+ 2(—46b" + 63)a’B° + (334b° — 17)a*B°

+ 3(64b> — 95)a* B0 — 3208"%}.

Eliminating By, from these equations, we obtain
Rroo + &*BSo + o*BTro = 0, (3.8)

where
R=B*FG1 — F1Gy, S=FH, — FiHs, T=0LF, — L F.

From (3.8),we get

(R/a*B)roo + Sso + Tro = 0. (3.9)
Since only the term e10%® of Sso in (3.9) does not contain 8, we must have hp(26)Vas, such that
Oé2680 = BV267 (310)
where
€1 = —4ai(azs — azs).
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First consider that a® # 0(modB) and b*> # 0. (3.10) shows the existence of a function k(x)
satisfying Vas = ka?®, and hence so = kf3, (3.9) reduces to

(R/a®B)roo + SkB + Tro =0,

which implies that
Rroo + Ska’B* + o®BTre = 0.

Only the term —2a1a28(a12 — 12b4)r00 of the above does not contain 8. Thus there exist hp(29)Uag
satisfying —2a1a28(a12 — 12b4)r00 = PBUag. It is a contradiction, which implies k& = 0. Hence we
obtain sg = 0;s; = 0. Therefore, (3.8) becomes

Rroo + a’BTre = 0. (3.11)

Only the term 1884163%%rgy of (34) seemingly does not contain a®, and hence we must have
hp(28)Vas such that 82100 = a?Vas. From o? # 0(modf) there exist a function f(z) such that

roo = o’ f(z); 1ij = ai; f(x). (3.12)
Transvecting above by b'y’, we have
ro = Bf(x); rj =b; f(). (3.13)
Substituting (3.12) and (3.13) into (3.11), we have
f(@)(R+ B°T) =0. (3.14)
Assume that f(x) # 0, from (3.14) we get
R+ BT =0,
The term —2a1a*®(a12 —12b*) of the above does not contain 3. Thus there exist hp(27) Va7 satisfying
72a1a28(a12 — 12b4) = [Var, where Va7 is hp(27) this implies Vo7 = 0, provided that b2 # 0. Hence
f(z) = 0 must hold and we obtain
roo =0; ri; =0 and ro =0; r; =0.

Conversely, substituting roo = 0, so = 0 and ro = 0 into (3.5), we have By, = 0, that is, the Finsler
space with (3.1) is a weakly-Berwald space.

On the other hand, if we suppose that the Finsler space with (3.1) is a Berwald space, then we have
roo = 0, so = 0 and ro = 0, because the space is weakly Berwald space from the above discussion.

Hence s;; = 0 hold good.

Now consider o? = 0(modf3), Lemma (2.2) shows that n = 2, b*> = 0 and o? = 33, § = d;(2)y:.
From these conditions (3.8) is rewritten in the form

R'roo + B6S s =0, (3.15)
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where

R =aianf'*6" + (a1a14 + a2a12)515513 + (2a1a16 + a2a14 — 2a4a12

16 ¢12 17 511
—2a1a15)370 " + 2(a1a1s + a2a16 — a4a14 + a12a6 — a1017 + azais)f o

+ (a1a20 + 2a2a18 — 4asais + 2a6a14 + agarz — dararg + 2aszarr

— 4a5(115)ﬁ18510 + (a1a22 + aza20 — 4asai1s + 4dasais + asaia + aioai2

— 2a1a21 + 4azarg — 4airas — 4a7a15)51969 + (2a1a24 + a2a22 — 2a4a20

+ 4agais + 2asaie + aioai4 + 760 — 2a1a23 + 2a3a21 — 8asaig — 4araig

— 209a15)52058 + 2(—96 + aza24 — asazz + agazo + asais + aioais + 380a14
+ 352 4 80a1 + azagz3s — 2asa21 — 4arar9 — agarr — a11a15)ﬁ2157 + (—192
— 4aga24 + 2aga22 + agasg + 2a10a18 + 1520a16 + 704a14 — 160a3 — 4asaas
— daraz — 4agary — 2a11a17 — 1992a15)37%6° + (384a4 + 4asass + agass
+ aioaz0 + 1520a18 + 1408a16 + 320as — 4arazs — 2ag9asz1 — 4ai11a1g
—1992a17 — 512a15)3*26° + (—384as + 2agass + aioazz + 760az0

+ 1408a1s + 320 — 2a9a23 — 2a11a21 — 3984a19 — 512a17) 576"

+ (—as + 2a10a24 + 760a22 + 704az0 + 160ag — 2a11a23 — 1992a21

— 1024a19)3>°6° 4 8(—24a10 + 190a24 + 88azo + 20a11 — 249az

— 64a21)3260° + 128(105 + 11ags — 4ass) B8 — 942085,

S = (2a1a26 — a1a25)ﬁ13513 + (2a1a28 + 2a2a26 — a1a27 — asa25)ﬁ14512

+ (2a1as0 + 2a2a2s — 4asazs — 2a1a20 + asazr — 2asazs)B 8!

+ (6a1as2 + 2a2a30 — 4asazs + 4asaze — 2a1a31 + 2asa20 — 2asazy
— 2a7a25)516510 + (2a1a34 + 6azasz — 4asaso + 4asazs + 2asaze

— a1a33 + 2azaz1 — 4asazg — 2arazr — a9a§25),61759 + (6a1ase

+ 2a2a34 — 12a4a32 4 4dasazo + 2asazs + 2a10a26 — a1a3s + azass
—4dasaz1 — 4darazg — agazy — a11a25)51858 + (—864a1 + 6azaze
—4dasazs + 12asa32 + 2agazo + 2a10a28 + 1520a26 + 1384 + asass

— 2asas3 — 4araz1 — 2a9a29 — a11027 — 996&25)51957 + (—864a2

— 12aspa4 + 4asass + 6asass + 2a10a30 + 1520a2s + 1408az¢ — 1384
— 2asa3s — 2a7aszs — 2a9a31 — 2a11a20 — 996 — 256a25)32°6°

+ (—4.432 + 12a6a36 + 2asass + 6a10a32 + 1520a30 + 1408a2s

+ 2.1384 — 2a7ass — agazs — 2a11a31 — 1992a20 — 256a27) 5% 6°

+ (—4.432 + 6asase + 2a10a34 + 3.1520a32 + 1408 + 2.1384 — agass

— a11as3 — 1992a31 — 512a29)8°26* + (—864ag + 6ai0ases + 1520a34
+3.1408 + 1384 — a11a3s — 996as3 — 512a31)5%%°

+ (—864a10 + 1520.3a36 + 1408a3s + 1384a11 — 996ass — 256as3)5°" 6>
+ (—432.1520 + 3.1408a36 + 996.1384 — 256a35)5°°6

— (608256 — 354304)32°,
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Since only the term 94208628 of R’roo + B(SS/ S0 in (3.15) seemingly does not contain §, we must
have hp(1)Vi such that roo = 0V4i. We have so = 0; s; = 0, now (3.15) becomes

R're0 = 0, (3.16)

which implies

roo = 0; ri; =0 and ro =0; r; =0.

Conversely from 790 = 0, ro = 0 and so = 0 we have B;; = 0. Thus the space with (3.1) is
weakly-Berwald space. Thus we state that

Theorem 3.1. A Finsler space with the metric (3.1) is weakly Berwald space if and only if the
following conditions holds;

(1) o® # 0(modpB) implies 7;; = 0 and s; = 0. v
(2) a? = 0(modp) implies n = 2, b> = 0 and r;; = 0, s; = 0 are satisfied, where o® = 6, § = dy’.

4 Conclusion

In this paper we investigate a Finsler space, where the (hv)- Ricci tensor G;; vanishes, but the (hv)-
curvature tensor G,hj & 1s not necessarily equal to zero. The aim of this paper to give an example for
the so-called Weakly Berwald Finsler Space (WBFS), and a sufficient condition for the existence of
a WBFS of second approximate Matsumoto type is determined also.
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