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Abstract

In this paper a Volterr= Hammerstein integral equation -HIE), with two continuous kernels
positionk(x,y) and of timeF(t, 1), is considered in the Banach spax¢0,1] x [0,T]),T < 1. The
existence of a unique solution of the V-HIE, is discussedtl @moved. A quadratic numerical method| is
used to obtain a system of Hammerstein integral equaf®idtEs) in position and the existence of a
unique solution of the SHIEs, under certain conditions, is proiamteover, we use two different
methods, quadratic method (QM) and Simpson's rule (SRparsform, in each method, the SHIEs intp a
nonlinear algebraic system (NAS). In addition, the exigeot a unique solution of each algebraic
system is guaranteed and proved. The Adomian decomposititroen@ADM) is used to solve SHIEs
without having to convert the system to a linearity.alin some applications contain numerical resylts,
in some different time, are calculated and the error astinin each case, is computed.

Keywords: Volterra- Hammerstein Integral Equation (V-HIE); @ystem of Hammerstein Integral
Equations (SHIEs); Quadratic Method (QM); Simpsosn's Rule (8R)linear Algebraic
System (NAS)he Adomian Decomposition Method (ADM).
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1 Introduction

Integral equations play an important role in many subiins of linear and nonlinear functional analysis and
their applications in potential theory, the theory ofsttity, mathematical physics, engineering, and
electrostatics problems. In particular the mixed integgalations has many applications in different sciences,
see [1-3]. Therefore, many different analytic and nirnmaethods are used to obtain the solution of the linear
and nonlinear integral equations , In addition, differeathods can be used to obtain the solution oNfs

in the spacé,[Q] x C[0, T], whereQ is the domain of the contact problem considered in theigoswhile

t € C[0,T], T < 1is the time. In fact, the numerical methods have plege important rule to obtain the
numerical solution of the IEs in linear and nonlinear sasee [4-12].

Consider th&/-HIE of the second kind:

t 1
pulx,t) = flx,t) + f f F(t,t) k (x,y) y(y, 7,u(y, T))dy dt , u+0. (¢Y)
00

Here,f(x, t) andy(x, t,u(x, t)) are two given functions, while the functiafx, t) is unknown in the space
C([0,1] x [0,T]), T < 1. The kernel of positiork (x,y) and the kernel of timg(¢,7) are continuous .The
constaniu defines the kind of the integral equation.

In this paper, the existence of a unique solution of(Egis discussed and proved, using Banach fixed point
theorem. A quadratic method is used to obta8H$Es in position, then the existence of a unique solution of
this system is considered and proved. The quadratic metho8impdon's rule are applied to obtaiNAS.

The existence of a unique solution of the produda& is guaranteed. Adomian method is applieS6HES,

as another way, to solve this nonlinear system. Numdezgiamples are considered and the estimate error, in
each case, is calculated, a comparison between thelsednét served.

2 Existence of a Unique Solution of the Volterra-Hamerstein Integral
Equation

In this section, we will prove the existence of a uniquetiem of (1), using Banach fixed point theorem. For
this aim, we write/-HIE (1) in the integral operator form:

Wu(x,t) = l% flx, t) + Wu(x, t) , u*E0 . (2)

1 t 1
Wu(x,t) = ; j J F(t, o) k (x,y) y(y, 7,u(y, T))dy drt. 3
00

In addition, we assume the following conditions:
i)  The kernel of positioft(x,y) is continuous, and satisfies
lk(x,y)| <M ,(M isaconstant) .
i) The kernel of tim& (¢, 7) is a continuous function and satisfies

|F(t,7)| <L ,(Lisaconstant).
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i) The given functiorf (x, t) with its partial derivatives with respect to position aimlet belong to
C([0,1] x [0, T]), and its norm is defined by:

lf (x, Ollcoaixporn = n}ﬁxlf(x, t)| < H,(H is a constant )

iv) The known functiony(x, t,u(x, t)) satisfies for the constants,c, and ¢ = max {c;,c,} the
following conditions:

(a) max|y(x t,u(x, t))' 1 lluCx, Olleqoaixfor -
(b)|y(x tulx, ) —y(xt, ¢, 0)I< ¢ [ulx, ©) — p(x, ).

Theorem 1:

In view of the conditions (i-iv)Y-HIE (1) has a unique solution in the Banach sgad6,1] x [0, T]),under
the condition(T L M ¢) < |u|.

Proof:

In view of the two formulas (2) and (3), we have

170 < e ol+ || [ 1€ ol ik @il vtz uo,0)lay ar
00

Using the conditions (i) - (iv — a), we obtain

IWulx, Ol < ] | Ilu(x Oll,(@=TLMoc). C))

The previous inequality (4) shows that, the operéitanaps the bal, into itself, whergp =

pl-a ’

Sincep > 0& H > 0, therefore we have < |u|. Also, the inequality (4) shows that the operdtbrs
bounded; moreover, the operatdris bounded.

For the two functions(x, t) and¢(x, t) in €([0,1] x [0,T]) , and from the formulas (2), (3), we find

t 1
IWute, 0 - W e, 0l < | j j F@ D1 1k Gl [y (o u@, D) = ¥ (3,7, 6, 0)| dy dr
00

In view of the conditions (i), (ii) and (iv — b), we have

W, £) — W (x, )| < lZ—l lluCx, £) — ¢, DIl ©

From inequality (5), we see that if < |u|, then the operatd# is continuous and contraction in the space

€([0,1] x [0,T]). So, from (4),(5) and the fixed point theordfhas a unique fixed point which is the
unigue solution of (1).
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3 A System of Hammerstein Integral Equations (SHIEs

In this section, e&SHIEs is obtained, using a quadratic numerical method, (Atkirj&8l4], Delves and
Mohamed [15]). For this, we divide the inter{@)T], 0 <t < T < 1 into s subintervals, by means of the
points:0 =ty <t; <t <.<ty; < <t, < <t;=T,wheret=t, , t=t; , pgq=012,..,s,
use the quadrature formula in the integral term of(E)x.then neglect the errdv;HIE (1) becomes

P 1

bty () = W g [ G 4 (v, 00) dy = 0, ©)
0

q=0
where we used the following notations:
u(et,) =0, Fltyty) =Foq , f(x1,) = £, yOrte u(ty)) =g (3.u,0))

and the weight functionw, satisfies w, =h/2; if q=0, s,and w, =h ; if 0<gq <s.Eq. (6)
represents 8HIEs, that can be solved using recurrence relations.

Now, let E be the set of all continuous functidfiée) = { uy(x), u;(x),..., Uy, ...}, Where u,(x) are
functions in the spac€[0,1] and the norm in the spaéeis defined by]|U||z = max, max |u,(x)|. Then
X

E is a Banach space.
4 The Existence of a Unique Solution of SHIEs

To discuss and prove the existence of a unique solutidre&HIEs (6) in the Banach spaég we write the
(6) in the integral operator form

_ 1
Vu,(x) = u fo(x) +Vu,(x), @)
where
v 7
Vu, (x) = ;z Wq Fpq j k(x,¥) vq (y, Uq (y)) dy . (8)
q=0 0

In addition to condition (i) of theorem (1), we assumefétiewing conditions:
(1) max max |fp(x)| = ||f(®)|lg < H*,(H" is a constant) .
P x
S
) Z max |wq Fp,q| <L*, (L isaconstant).
q
q=0

(3) The known continuous functions. (x up(x)),Vp satisfies for the constantsc;, ¢; and
¢* =max{c;,c; }, the following conditions:

(@) maxmax|y, (x,u, )| < ¢ NV

b2 1 (24,0) =1 (x.6,00)| = € [, (0) = 9, ()]
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Theorem 2:
The system (6) has a unigue solution in the spageder the conditiort™ = L*M ¢* < |u|.
Proof:

In view of the two formulas (7) and (8), we have

p 1
17Ol = [ U1+ 3] D 1w Bl | [ 101 10 (304 00) ]|
q=0 0

Using the conditions (i) and (1) - (&), we obtain
_ H* o . e
||Vup(x)|| < m-f- |H_|”up(x)” ,(a* = L*Mc*). 9

*

The previous inequality (9) shows that, the operifanaps the bal, into itself, whered =

lul-a* *

Sinced > 0and H* > 0, therefore we have* < |u|. Moreover, the inequality (9) involves that the
operator is bounded.

For the two functions, (x) and¢, (x) in E, and from the formulas (8), (9) we find

p 1
1750 = P8y Ol = 2] "It Bl | [ 1t 301 e (370 99) = 14 (3949)] |
q=0 0

In view of the conditions (i), (2) with (3 5,), we have

*

17,0 = P, < 17 [lap () = | (10)

From inequality (10), we see thatdf* < |u|, then the operatdf is continuous and contraction in the space
E. Consequently, from (9), (10) and fixed point theor@rhas a unique fixed point which is the unique
solution of (6).

5 Numerical Methods

5.1 Quadratic numerical method

We use a quadratic numerical method, to transfornStikEs (6) to aNAS, for this, we divide the interval
[0,1] into N subintervals, by means of the poifis=x,<x, <:-<xy=1, wherex=x;,i=
0,1,2, ..., N, then use the quadrature formula in (6), we get

N
=0

P
Hup; — Z Wq Fpq Z vikij Ve = fpi (11)
q=0

J
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where the notationsu,; = u,(x)), k;i; =k (x,%), vq; = Vg (xj,uq(xj)), are used, and; are the
. . _(h/2 j=0m
weights of the numerical methm;i—{ ho<j<m-

5.2 Composite Simpson's rule

In this section, we approximate tB#IEs of (6), using Composite Simpson's rule, (Nadir and Ram@ou
[16]) to obtain aNAS, in the form

N/2 N—'
.uup,izfp,i qu D.q zklZ] 1Vq21 1+sz121 }/q2]+k10)/q0+k1Nqu (12)
j=1 j=1

which can adapted in the form

Hlp; — qu pqz kij Yaj = foir (13)

wherev; = 1/3if j = 0,N,v; = 2/3 if j is even, and; = 4/3 if jis odd.

We can easily observe that the difference between the tyebralic systems (11) and (13) which are
obtained by quadratic method and Simpson's rule, respigciivén the values of the weights.

6 The Existence of a Unique Solution of the (NAS)

In order to guarantee the existence of a unique solutiblA&8fin a Banach spadé, we write theNAS (11)
or (13) in the integral operator form

_ 1
Z up'i = ;fp,i +Z up'i ) (14)

where

N
Zup; =~ zwq .4 Z vjkij Va; - (15)
=0

Then, we assume in addition to condition (2), of theorem fotlwving conditions:

(a) sup |fp,i| < H** (H*isaconstant).
i

(b) slep Z|vj ki,j| <E", (E"isaconstant).
N

(¢) The known continuous functions ; satisfy( v q, ;) for the constant§, , ¢, and¢ = max {¢; , ¢, }
the following conditions:

(@) sup 1va(ua )| < & ”u’lU”loo ,
(b) |Vq1(uq1) qu(¢q1)| = 'lequ ¢q.j| .



Raad; BJMCS, 14(6): 1-15, 2016; Article no.BIMC82B

Theorem 3:
Under the conditiod L* E* < |u| , theNAS (11) or (13) has a unique solution in the Banach sfface
Proof :

From the formulas (12) and (15), we obtain

1 14 N
12l = 3] sl + D o Erl Dl n,.,-ll,
q=0 j=0

In view of the conditionsi( - (3-a), the above inequality takes the form

14 Up,i ” pl” at=SLE. (16)

=< Tul Iul
Inequality (16) shows that, the operafomaps the bal§, into itself, where

o ;
e 0

Sinces > 0 andH*™* > 0, therefore we have** < |u|, moreover, the inequality (17) involves that the
operatorZ is bounded.

For the two functionsu, ; and ¢,,; in [, the formulas (14) and (15) yield

|Z_upt Zy| < M |Z|Wq PQ|Z|UJ Ullyqj(qu) qu(¢q1)|

Using the condition§2), (b) and(c - 15) , the above inequality takes the form

”Z_upt Z¢pt” <_“

<7 =gl - (18)

In view of inequality (18), we see that the operatois continuous in the Banach spd®e Moreover,Z is a
contraction operator under the conditioff < |u|. From Banach space fixed point theorehhas a unique
fixed point which is the unique solution NAS (11) or (13).

Theorem 4:

If the sequence of continuous functigng (x, t)} converges uniformly to the functigf(x, t) in the space
C([0,1] x [0,T]), then under the conditions of theorem (1), the sequince, t)} converges uniformly to
the exact solution of Eq. (1) ([0,1] x [0,T]) .

Proof:

The formula (1) with its approximate solution gives

a0 = 0, 0] < |70 = 0]+ o l”wr 1k el | (0w u, D) = ¥ (310, 0)| dy dr
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In view of the conditions of theorem 1, we get

1
eI LA RACDLE

||u(x, t) —u;(x, t)” < P
Hence,”u(x, t) —u;(x, t)|| -0 Since”f(x, t) — fi(x, t)|| —0asj—o w.
Corollary 1:

The estimate total error define by the relation:

t 1 P N
R = J jF(t, Dk (0, y)y(y, T, uly,1))dy dr — Z wy E, g z vikij vq;ls
00 q=0 j=0
when j = max{N, p} = « , the sums
p N t 1
qu Fpq Z”j kij Yaj(= jJF(t.T) k o, y)y(y,tu(y,0)dy dry,
q=0 j=0 00

and the solution of thHAS (11) or (13) becomes the solution\6HIE (1) .

In view of theorem 4, we can deduce that the total &yreatisfies lim;_,., R; = 0.

7 The Adomian Decomposition Method (ADM)

(19)

(20)

ADM is a semi-analytical method for solving integrauations, ordinary or partial differential equations,
algebraic equations, and so on, see [17-19]. The ADMNasoseparating the equation into linear and
nonlinear portions. The nonlinear portion is decompdséal a series of Adomian polynomials, and the
solution is generated in the form of a series whogegeare determined by a recursive relationship using
these Adomian polynomials, so, the solution can be detedrby calculation of the Adomian polynomials
which allow for solution convergence of the nonlinear portibthe equation, without simply linearizing the
system. In the references [20-23] the convergence of AbAtiscussed and proved by different methods.

Consider the following system of integral equations:

P 1

Huy (x) — z wq Fy q j k(x,y) vq (y. Uq (y)) dy = f,(x).
0

q=0
Assume the functions, (x) can be written as an infinite series:

0

Uy (x) = z Up i ().

i=0

While the nonlinear terny, (x, up(x)) of (21) is decomposed into an infinite series

Yp (x, Uy (x)) = Z Api s
i=0

21

(22)

(23)
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where the traditional formula o, ,, is:

A -=i d—L.y Zn"u (24)
bl il dnl p ] pn 4
n=

n=0
after applying the ADM on equation (21), we have

1

1 1 ‘
oG =2 /05 ()= 2 ) Wy By [ kG Ay, (12D (@25)
q=0

0

Where the so-called Adomian polynomialg; can be evaluated for the nonlinear funcl;'rplﬁx, up(x)),
therefore the Adomian polynomials are given by

Apo = Vp(up,O)'
Ap1 = Ups Pp (up_(,) )

1 N
App = Euzzz,l Vp (up,o) +Uup2 Vp (up.O) ,

1 .
Apz = gug,l Vf)(up.()) + Up1Ups Vp (up,O) +ups yp(up.O) .
1
(

1 1 R
Apa = ﬁug_l yp4) (up,o) + Eufv,lup.z yé”(uno) + <§u§_2 + up,lups) )‘/p(up,o)

+ Up g Vp(Upo)- (26)

The determination af,, , andu, ; leads to the determination 4f ; that will allows us to determing, ,,
and so on. This in turn will lead to the complete determinatf the components af,; i > 1, upon using
the second part of (25). The series solution follows immelgiafter using (22). The obtained series
solution converge to an exact solutiorveHIE (1).

8 Numerical Results

Consider theV-HIE (1), atu =1, and the times' = 0.008,T = 0.07 and T = 0.5, then divided the
position interval byV = 100 units, and the time interval in= 4. The next tables give us an exact solution
with the Simpson's approximate solution (App. SR), quadrapiproximate solution (App. QD), and
Adomian decomposition method (App. ADM), with their copasding errors (E. QD.), (E. SR.),
(E. ADM), respectively, the diagrams explain the diffexe between these results.

Application 1:

Consider the integral equation:

(x+) (u(y, ) dy dr, 27

u(x,t)=f(xrt)+ff” G-x)

The exact solution : u(x,t) = x? t3.

Tables 1, 2 and 3 describe the errors of the approximhtioso of equation (27), by SM and the QM, their
accuracies ard07°, 107%,1073, whilst, the accuracies of ADM arg0=%,1077, 10™* , whenT =
0.008,0.07, T = 0.5, respectively.
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Table 1.Case 1: N =100, T = 0.008

X Exact App. SR E. SR App. QD E. QD App. ADM E. ADM
0 0 0 0 0 0 0 0
01  5.1200E-08 5.1200E-09 0 5.1200t-08 O 5.1200¢-09 0
0.2 2.0480E-08 2.0480E-08 O 2.0480E-08 0 2.0480E-08 O
0.3  4.6080E-08 4.6080E-08 0 4.6080-08 O 4.6080E-08 0
0.4 8.1920E-08 8.1920E-08 O 8.1920E-08 0 8.1920E-08 O
0.5 1.2800E-07 1.2800E-07 O 1.2800E-07 0 1.2800E-07 O
0.6 1.8432t-07 1.8432E-07 0 1.8432t-07 O 1.8432t-07 0
0.7 2.5088E-07 2.5088E-07 O 2.5088E-07 0 2.5088E-07 O
0.8  3.2768E-07 3.2768E-07 0 3.27681-07 O 3.2768E-07 0
0.9 4.1472E-07 4.1472E-07 O 4.1472E-07 0 4.1472E-07 O
1 5.1200E-07 5.1200E-07 O 5.1200E-07 0 5.1200E-07 O

Error of Simpson's App. Sol.

Table 2.Case 22N =100, T =0.07

Fig. 1.

Error of Quadratic's App. Sol.

Error of Adomian App. Sol.

X Exact App. SR E. SR App. QD E. QD App. ADM E. ADM
0 0 0 0 0 0 0 5.CE-14
0.1 3.430E-06 3.430E-06 O 3.430E-06 0 3.430E-06 6.0E-14
0.2 1.372E-05 1.372E-05 O 1.372E-05 0 1.372E-05 7.0E-14
0.3 3.087E-05 3.087E-05 O 3.087E-05 0 3.087E-05 8.0E-14
0.4  5.488E-05 5.488E-05 O 5.488E-05 0 5.488E-05 8.0E-14
0.t 8.575E-05 8.575E-05 0 8.575E-05 0 8.575E-05 1.0E-13
0.6 1.235E-04 1.235E-04 O 1.235E-04 0 1.235E-04 1.0E-13
0.7 1.681E-04 1.681E-04 O 1.681E-04 1.06E-10 1.681E-04 1.0E-13
0.8 2.195E-04 2.195E-04 1.33E-10 2.195E-04 1.99E-10 2.195E-04 1.0E-13
0.9 2.778E-04 2.778E-04 2.35E-10 2.778E-04 3.51E-10 2.778E-04 1.0E-13
1 3.430E-04 3.430E-04 3.94E-10 3.430E-04 5.90E-10 3.430E-04 5.0E-13

de-10

Je-10

210

e

i 0
0 02
b%%% n.s“
“%“B.W 1 "

Error of Simpson's App. Sol.

Fig. 2.

Error of Quadratic's App. Sol.

Error of Adomian App. Sol.

10
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Table 3. Case AN =100, T=0.5

X Exact App. SR E. SR App. QD E. QD App. ADM E. AM
0 0 0 0 0 0 0 0
0.1 1.250E-03  1.281E-03 3.143E-05 1.293E-03 4.30BE- 1.252E-03  2.472E-06
0.2 5.000E-03 5.036E-03 3.608E-05  5.046E-03 4.598E-05 5.003E-03  2.834E-06
0.3 1.125E-02  1.129E-02 4.119E-05 1.130E-02 4.989E- 1.125E-02  3.224E-06
0.4 2.000E-02 2.005E-02 4.705E-05  2.005E-02 5.429E-05  2.000E-02  3.643E-06
0.5 3.125E-02 3.130E-02 5.404E-05 3.131E-02 6.002E- 3.125E-02  4.096E-06
0.6 4.500E-02 4.506E-02 6.284E-05 4.507E-02 6.988E- 4.500E-02  4.587E-06
0.7 6.125E-02 6.132E-02 7.437E-05 6.133E-02 8.308E-05 6.126E-02  5.120E-06
0.8 8.000E-02  8.009E-02 8.999E-05 8.010E-02 1.025E- 8.001E-02  5.702E-06
0.6 0.1012 0.10136: 1.116E-04 0.10138: 1.308t-04  1.013E-01  6.339E-06
1 0.125 0.125142 1417E-04 0.125172 1.719E-04 EZBO 7.040E-06
1]
12
[X]
06
(1]
Error of Simpson's App. Sol. Error of Quadratic's App. Sol.  Error of Adomian App. Sol.
Fig. 3.
Application 2:

Consider the integral equation:

y
x+1

t 1
u(x, t) = f(x,t) + f f et™® (u(y, T))3 dy dr. (28)
00

The exact solution :  u(x,t) = tcosh(x) /2.

Tables 4, 5 and 6 describe the errors of the appaie solution, of equation (28), by SM and QM, the

accuracies arel077, 107% 1072 , the accuracies of ADM arel078,1075 1072 , when
T = 0.008,0.07and T = 0.5, respectively.
Table 4. Case 4:N =100, T = 0.008
X Exact App. SR E. SR App. QD E. QD App. ADM E. AIM
0 4.000E-03 4.000E-03 5.54E-10 4.000E-03 6.61E-10 .00GE-03 7.60E-11
0.1 4.020E-03 4.020E-03 5.06E-10 4.020E-03 6.04E-10 4.020E-03 6.90E-11
0.2 4.080E-03 4.080E-03 4.73E-10 4.080E-03 5.67E-14.080E-03 6.40E-11
0.2 4.181E-03 4.181E-03 4.49E-10 4.181E-03 5.43E-10 4.181E-03 5.90E-11
0.4 4.324E-03 4.324E-03 4.36E-10 4.324E-03 5.32E-1%4.324E-03 5.50E-11
0.5 4511E-03 4.511E-03 4.31E-10 4.511E-03 5.33E-14.511E-03 5.10E-11
0.€ 4.742E-03 4.742E-03 4.35E-10 4.742E-03 5.46E-10 4.742E-03 4.80E-11
0.7 5.021E-03 5.021E-03 4 .48E-10 5.021E-03 5.72E-1(6.021E-03 4.50E-11
0.8 5.349E-03 5.349E-03 4.73E-10 5.349E-03 6.14E-10 5.350E-03 4.20E-11
0.9 5.732E-03 5.732E-03 5.09E-10 5.732E-03 6.75E-10.732E-03 4.00E-11
1 6.172E-03 6.172E-03 5.62E-10 6.172E-03 7.58E-10 .172E-03 3.80E-11
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Error of Simpson's App. Sol. Error of Quadratic's App. Sol.  Error of Adomian App. Sol.
Fig. 4.

Table 5. Case 5:N =100, T = 0.07

X Exact App. SR E. SR App. QD E. QD App. ADM E. ADM

0 3.500E-02 3.500E-02 2.228E-06 3.500E-02 2.300E-06 3.500E-02 4.56E-07
0.1 3.518E-02 3.518E-02 2.028E-06  3.518E-02 2.094E-06 3.517E-02 4.15E-07
0.2 3.570E-02 3.570E-02 1.864E-06 3.570E-02 1.927E-06 3.570E-02 3.80E-07
0.3  3.659E-02 3.659E-02 1.730E-06 3.659E-02 1.792E-06 3.659E-02 3.51E-07
0.4 3.784E-02  3.784E-02 1.618E-06  3.784E-02 1.683E-06 3.784E-02 3.26E-07
0.5 3.947E-02 3.947E-02 1.527E-06 3.947E-02 1.595E-06 3.947E-02 3.04E-07
0.6 4.149E-02  4.149E-02  1.452E-06  4.149E-02 1.527E-06 4.149E-02 2.85E-07
0.7 4.393E-02 4.393E-02 1.393E-06 4.393E-02 1.476E-06 4.393E-02 2.68E-07
0.8 4.681E-02 4.681E-02 1.348E-06 4.681E-02 1.443E-06 4.681E-02 2.53E-07
0.8 5.016E-02 5.016E-02  1.319E-06  5.016E-02 1.430E-06 5.016E-02 2.40E-07
1 5.401E-02 5.401E-02 1.305E-06 5.401E-02 1.437E-06 5.401E-02 2.28E-07

Error of Simpson's App. Sol.  Error of Quadratic's App. Sol.  Error of Adomian App. Sol.
Fig. 5
Table 6.Case 6:N =100, T = 0.5

X Exact App. SR E. SR App. QD E. QD App. ADM E. ADM

0 0.25 0.257463 0.007463 0.257492 0.007492  0.248635 0.001365
0.1 0.251251 0.258036 0.006785 0.258062 0.006811  0.25001 0.001241
0.2 0.255017 0.261238 0.006222 0.261263 0.006246  0.253879 0.001138
0.2 0.26133! 0.26708: 0.005741 0.26710! 0.00577:  0.26028: 0.0010¢

0.4 0.270268 0.275608 0.005340 0.275633 0.005365  0.269293 0.000975
0.5 0.281901 0.28689 0.004991 0.28692: 0.005011  0.28099! 0.0009:

0.6 0.296366 0.301052 0.004686 0.301081 0.004714  0.295513 0.000853
0.7 0.313792 0.318212 0.00442 0.318244 0.004452 0.312989 0.000803
0.6  0.33435! 0.33854! 0.0(4181 0.33858: 0.00422:  0.333¢ 0.00075!
0.9 0.358272 0.362253 0.003982 0.362295 0.004023  0.357553 0.000719
1 0.38577. 0.38957: 0.00380: 0.38962: 0.00385.  0.38508t 0.00068:
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Error of Simpson's App. Sol. Error of Quadratic's App. Sol.  Error of Adomian App. Sol.

Fig. 6.

9 Conclusion

A SHIEs in position was formulated from\&HIE by using quadratic numerical method.

Using Banach Fixed Point theorem, the existence wfique solution of the V-HIE, was discussed
and proved in the spatg[0,1] x C[0,T],T < 1.

The existence of a unique solution of SBidIEs, under certain condition, was discussed.

A NAS was configured fron$HIEs by using two different methods, QM and SR.

ADM was used as another way to proceS8$HEs by a convergent series, without be compelled to
convert it to a linear system.

Some applications contain numerical results, ifed#nt times, were calculated.

This equation can be solved also by using many odsths Homotopy, Galerkin, and Collocation.
We can consider this equation in two dimensiorh@gosition, with a singular kernel.

We observed from the numerical results of the stidases that:

Time playing a great role in the results, where éh@r values was increasing according to the
increasing of time.

In all the calculated result§R can get a bit more accuracy approximate solutiam QM , but
the most accurate DM .

The approximate solutions are more accurate whenetact solution is a polynomial, as in
application 1.

The error values, approximately, was vanished atitiitial times (wherT < 0.01) , for all

x € [0,1].
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