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Abstract

Oscillatory blood flow in convergent and divergent chanigeisvestigated. The problem which involves
a set of non-linear differential equations is handledlytically using the method of regular perturbation

series solutions. Solutions are obtained for the velocitiessymeesand wall shear stress, and are analyzed
graphically. It is found that the variations in the ggulamplitude and height of constriction reduce |the
axial velocity and pressure but increase the radialcitgland wall shear stress. More so, it is observed
that flow separation occurs in the radial velocity andguee structures in the convergent and divergent
regions respectively, when the height of the constrictiervaried.

*Corresponding author: E-mail: wiaokuyade@gmail.com



Okuyade and Abbey; BJMCS, 14(6): 1-17, 2016; Asticd. BIMCS.23221

Keywords: Oscillatory flow; pulse amplitude; constrictiogight; convergent and divergent channels.
1 Introduction

Oscillatory flow of an incompressible viscous fluid througbnvergent and divergent channels has
applications in engineering and biological systems.

The human cardiovascular system is infested by a numbeliseases. An example of such is the
atherosclerosis of the artery, which involves the hardgaf the artery due to deposition of lipids (a generic
name for esters) on its intimae/internal walls. Theifteation of the lipids leads to lose of distensibilgy

the point of infection. Also, the progressive encroachméttieoplague on the internal walls tends to block
the passage of blood to other parts of the body. And, this espodra loads on the heart musculature [1,2].
To maintain the peripheral flow, the heart enlargesfjtaeld thus, increasing the amplitude of the pulse or
pressure wave, which subsequently leads to abrupt risdeinflow variables [2,3]. More so, the
encroachment of the plague leads to distortion of thed¢dpgeometry of the artery to other forms, such as
the idealized locally constricted channel (see [4,5]) anistpltic channel (see [6,7]). This plague is found
predominantly in the internal carotid artery which suppliexdlto the brain; the coronary artery which
supplies blood to the cardiac muscles, and the femoray avtech supplies blood to the lower limbs [1].

Rao and Devanathan [8] examined the fluid mechanical aspebée pulsatile flow of an incompressible
viscous fluid through tapered tube, locally constricted paristaltic channels. They did not consider the
flow behaviours in the regions before and after the peakeofstenos height, which are idealized as the
convergent and divergent channels. Therefore, we are matii@iavestigate the flow behaviours in these
convergent-divergent channels using the same model.

There are several reports in literature on the floaroincompressible viscous fluid through tubes of varying
cross-sections. For example, [9] examined the charstitsrof pulsating flow in a confined channel, and
observed that a given rate of mass flow is obtained inlatieg motion under an average pressure gradient
as in steady flow; [8] investigated the pulsating flohao incompressible viscous fluid in tubes of varying
cross-sections using the perturbation series expansion sslwtioich they developed, and observed that
flow separation occurs in the wall shear stress structuedl igeometries; [10] studied the steady laminar
flow of an incompressible fluid in a channel of varyingltlv with permeable boundaries, and observed that
the fluid absorbed at the wall has a strong influence daaieg the occurrence of initial flow separation.
Furthermore, [11] considered the pulsating flow an incesgible viscous fluid through stenotic vessels
using the Reynolds-averaged Navier-Stokes approach, and pdedietall shear stress peak at the throat of
the stenosis with maximum values observed distal to the steéma® the flow separation occurred; [12]
examined the effects of MHD field on a two-dimensional limear flow of a incompressible viscous
electrically conducting fluid through convergent-divergenincigds using the Pade-Hermite approximations,
and observed that critical values of various parametersyped of singularities exist for different choices of
MHD effects. Similarly, [13] looked at the influencela@at and mass transfer on the flow of blood (which
they considered as a Phan-Tien-Tanner fluid) through esgewnt tapering, divergent tapering and non-
tapered arteries for different parameters of interest,reticed among others, that the shearing stress at the
throat of the stenos increases with an increase inxtieenal parameter, volumetric flow and Weissenberg
number; [14] presented an analysis of blood flow through chbitiircating arteries that are clogged with
fats using the one way fluid-solid interaction, and stibthe effects of the Newtonian and non-Newtonian
behaviours on the flow.

The purpose of this paper is to address the effectseofuthplitude of the pressure wave and height of
constriction on the velocity, pressure and wall sheasssguctures in the regions before and after the peak
of the constriction using the perturbation series solutiotiseoform developed by [8].

This paper is organized in the following manner: sectioa thé methodology; section 3 gives the results
and discussion, while section 4 holds the conclusions.
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2 M ethodology

We consider the flow of blood in axi-symmetric convergert divergent channels whose radii vary slowly
with the cross-sections. The fluid viscosity is a funcbbriemperature. With the loss of distensibility, the
channels now have rigid walls. At the entrance of the twleeassume the flow to be fully developed and
pulsating with a prescribed periodic frequefficgnd time average volume flux Q. If (R, X) and (u, v, w)
are the polar cylindrical orthogonal coordinates andorembmponents, respectively, assuming the flow is
symmetrical about the X-axis, then for a two-dimensiot@k fsituation the continuity, momentum and
energy equations describing the flow are:

10 ou
—— (Rul+— =0
Rar (Y *ox @
ou ou ou _ dp 0°u 10u  u 9%
CHtU—HtW— S Y —— t ——+—— )
ot oR oX oR R ROR R? o0X?
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6_vv+uaw+waw 1 ap 0 W 16w+6 W @

o OR  OX pOX oR2 ROR ax2

wherep the density, p the pressur@,the kinematic viscosity of the fluid, arldis the time. R=0 is the
centre or symmetric axis of the tubR:= ao( X, t) which is an arbitrary function of X and t is the cross-

sectional radius of the tub&, is the characteristic radius of the tube, and t is the.ti

»Q&“fé — )

Fig. 1. The convergent and divergent models of the sclerotic artery

The boundary conditions are:

@ w =0, g—;: 0 at R=0 (4)

(i) there is no tangential motion at the wall of thigetie:

u(a, ) =0,R=3,(X9 ©
(iii) the flux across a cross—section of the tube iscpled as:
3D(x,t) 21T Iﬂ
[ dR| Rud=2my, 1+ ke ™)
0 0 (6)

where/, is a constant, k is the amplitude of the pulse whichassumed to be small, arfidis the
frequency of oscillation.



Okuyade and Abbey; BJMCS, 14(6): 1-17, 2016; Asticd. BIMCS.23221

We eliminate the pressure terms in equations (2) and (3pkigg the 9 of equation (2) and9_of
oR X

equation (3), then subtracting the first result fromsbeond one, we have

3 o), u(0u dw) aydu v,
Ot\dR 0X) 0X\0R 90X 0RO

Ua_z(a_u_aw) az(au av>v<j+1 aéau aw au CRY @
0X* R 9X) OR\0R a R RO RO aRa
Also, the pressure expression in the axial directionbeaobtained from equation (3), as
op _ (0°w, 10w  0*w (a_vv+ua_vv+wa_wj -
X | 0R? ROR? ax ot OR oX

Introducing the stream functiapand vorticef2, respectively i.e.

_loy | _ 1oy o
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l//
X2 (10)
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into equations (7) and (8), we have

°Q 0°Q 100 Q
+—+ (11)
ot RGXOR Ro R6X Ro »

0Q 10964[/ 16Q0¢ Qoy _ g Bl Bl
X2 0R ROIR R

@w_i Oy 1% 19%W) _ 1a¢/a¢/ 1ayo 1,[/+ %y (12)
oX RJX?R ROIR® R?0R? R? 0R 0XdR R2 0X dR? R OtoR

with the boundary conditions as

_n 1oy 10w 1oy _ _

=0, 10y 10 _ 10U _ a4 r=0 13
v R dX O’RaR2 RoR 0a (13)
W _s =y (1+ké?)atR=a( X, 1 14
=0V Al JatR=a( X, 9 (14)

More so, we assume that the cross—section of the tube madel vary in the axial direction, and for which
we take a(X, t) =a,S (sX/aD, N, = RO(1+£f (X,t)), 0 <r <£1,0 < x <l1wheresisan

a
arbitrary function of X; a is the variation in the r alohg axial direction0Q < & = T" <<1lis a small

dimensionless parameter that characterizes the sloatieariin the channel radius; L defines the channel
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characteristic lengthg = O corresponds to a tube with constant radius.sAiBicreases from zero the
variation ofl// in the axial direction depends upéhX instead of X.

Similarly, introducing the following non-dimensionalized iabtes

_R ,ngl, T = Bt, q)(r,x,T):i,
a, a, Y,
Qa’ _Vv _ B _a

X, T =% ,Re=—"°, == = —
Arx W, au 7 a,u * S

where Re is the Reynolds number of the flgpvis a dimensionless number for the frequency of oscillation,

T is the dimensionless timejs the height of constrictiorg and & are the dimensionless stream function
and vortices respectively; into equations (8) - (12)eetvely, we have

u=-19¢ (15)
r or
wo_l0¢ (16)
r ox
10% 10¢
—-109¢_ 109 17
@ ror? ra (0
2
,76_a)+R_eg(6_w6_<0+6_w6_¢+6_06_): 10w, 10w 1, 18)
oT r or 0x oOx or r oOX r2or? ra r
3 2
op __Re _1M+i07¢ +h 9 (19)
oX el ror® r%or?) aoraT

1

Equation (19) tends to suggest that the pressure field is ef-erdAlso, the O)? terms are assumed to be
£

very small, therefore, they are neglected.

Similarly, the wall shear stress is given as

T, = puvQ (see [8)) yielding
_10°p 109
“rort o )
The boundary conditions become:
(D:O’M:O,a(lawj:( at r=0 A (21)
0X or\r or
=1+ keiT,?f:( at r=s(x,T) (22)
r
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Now, we shall seek for perturbation series solutions tatheusmall parameter In particular, we shall use

the form developed by [8], and which is of the form:
f= ke T +e( 10+ ke 1)+

wheref representgv andg.

Substituting equation (23) into equations (17), (18), (21) and \{#2have:

the zeroth order terms as

(JO) _ 1 6240(0) _la¢(o)]

r g2 r o

w(o) =1_ aZé(O) +1_ 64_0(0)
r\ ar® r or

0’ 1067 1 (o) _
ar2 roo 2

2_(0) (0)
0“w +}aw —[K2+1Jw(o)=0
arz r or r
where A2 =i

with the boundary conditions are:

4O =50 ¢

=0
r ox r ox atr=0

2[109%|_o 106
or\r o ai(r a

=0

) i} 0©) i}
or or
#O=4 =

while the first order terms are

0 at r=s

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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More so, by equation (22), equations (15), (16), (19) addk{@come
=100 10 (04 1dm gk 4 e + ke ) (36)
ror ror
w= Ea_¢ = l% % = l% i(do) + keiT (0) + £¢(1) + Ekelt¢(l)) (37)

rox rox 0s rox os
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The analyses of the solutions show that the non-steatispeery insignificant.

By exhaustive algebraic operations, the solutions ofzéiteth order equations (23) - (26), (29) - (32) and
(35) - (38), are:

- )

2

20 = _
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S\ 'S
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where |, (Ar), 11(Ar), 1, (Ar), 1,(As), k(As) and } (As) are the modified Bessel function of order zero, twe,
respectively. It is worthy to note that the solutiongdgoations (31) and (33) as expressed in equations (45)
and (47) are culled and developed frf@h p. 206.

x/2

Furthermore, the geometries under consideration arecdheergent channg=e™“ and divergent

channel s = €%
3 Results and Discussion

We considered the flow of blood through a stenos artery iphasis on the effects of pressure wave
amplitude and height of constriction on the overall flow strudtutbe regions before and after the peak of
the constriction. These two regions under consideration appatxithe convergent and divergent channels,
as shown in Fig. 1. The analyses of the results show #rétions in the amplitude and height of the
constriction have tremendous effects on the flow structuecethis end, using Maple 12 computational
software and the following physically realistic paragnst T=t/4; A=2; k = 0.01, 0.03, 0.05, 0.0Z;= 0.01,
0.03, 0.05, 0.07; Re= 10, 100, 500, 1000 we obtained the results shéigs. 2 — 17. These figures show
the profiles of the computational results for the veiesipressure and wall shear stress. The profiles show
that increase in the amplitude decreases the axial telmcd axial pressure (see Figs. 2, 3, 6 and 7), but
increases the radial velocity and wall shear stress (gee4; 5, 8 and 9). Blood flow in a normal artery is
laminar and Poiseuille. But due to the stenosis, the arthainel is blocked moderately or severely. For
this, the heart enlarges itself to maintain the periphesal. fThe enlargement of the heart leads to increase
in the amplitude of the pulse or pressure wave. And,inbeease in the amplitude energizes the flow
variables in the direction of the increase, which in taise, the radial velocity and wall shear stress. This
accounts for what is seen in Figs. 4, 5, 8 and 9. On tier band, the increase in the amplitude reduces the
axial velocity and axial pressure as seen in Figs. @add 7. This could be due to the increase in the radial
velocity.

10
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Fig. 2. Axial velocity-amplitude (k) profilesin a convergent channel
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Fig. 3. Axial velocity-amplitude (k) profilesin a divergent channel
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Fig. 4. Radial velocity-amplitude (k) profilesin a convergent channel

Furthermore, the profiles show that the height of the cotistr decreases the axial velocity (see Figs. 10
and 11), while it increases the axial pressure and Wwalrsstress (see Figs. 14, 16 and 17). As said above,
blood flow in the artery is laminar, Poiseuille and fullyel®ped. It moves with the velocity with which it is
released from the heart. As it gets to the region of dotish, the flow pattern changes. The blockage
caused by the stenos reduces the axial pressure as shieignif and Fig. 11.

11
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Fig. 5. Radial velocity-amplitude (k) profilesin a divergent channel
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Fig. 6. Pressure-amplitude (k) profilesin a conver gent channel
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Fig. 7. Pressure-amplitude (k) profilesin a diver gent channel

12



Okuyade and Abbey; BIJMCS, 14(6): 1-17, 2016; Artid.BIMCS.23221

1000

500

o 1 T T 1
0 0.2 0.4 0.6 0.8 1 1.2

radial distance(r)

Wall shear stress
distribution

={}=0.01 =A=0.03 =X=0.05

Fig. 8. Wall shear stress-amplitude (k) profilesin a convergent channel
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Fig. 9. Wall shear stress-amplitude (k) profilesin a diver gent channel
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Fig. 10. Axial velocity-height of constriction (g) profilesin a conver gent channel

More so, the changes in the geometrical configomatffect the flow. In particular, for the convenge
channel, as the geometry thins down exponenti#ilg, pressure factor increases, and subsequendy, th
velocities and wall shear stress increase. It $® aleen that in the divergent channel whose gegmetr
increases exponentially, the radial velocity, axidssure and wall shear stress are increasedin@itease

13
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could be due to the influence of the flow situasidn the convergent channel. All these accountttier
results in Figs. 13, 14, 16 and 17.
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Fig. 11. Axial velocity-height of constriction (g) profilesin a diver gent channel
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Fig. 12. Radial velocity-height of constriction (g) profilesin a conver gent channel
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Fig. 13. Radial velocity-height of constriction (g) profilein a diver gent channel

Similarly, a special feature called the flow sepiaraoccurs in the radial and pressure structures<ed.3
and r< 0.46 for T=t/4, respectively (see Figs. 12 and 15). Initiathe radial velocity and pressure increase
with the height of constriction drop at these pairand then the flow pattern changes such thaethes
variables decrease as the height of constrictioreases. The occurrence of the flow separationcfwisi in

14
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agreement with [8]) is due to the adverse flow ¢omas at such points. [8] adduced that it is dueiscous
effects.
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Fig. 14. Pressure-height of constriction (g) profilesin a convergent channel
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Fig. 15. Pressure-height of constriction (g) profilesin a divergent channel
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Fig. 16. Wall shear stress-height of constriction (g) profilesin a convergent channel

The overall analyses show that the axial velocitypd as the pulse amplitude and height of conirict
increase. This has some health implications onsteaotic patient. The drop in the axial velocitade
subsequently to a drop in the rate at which thevesjated blood which bears oxygen and food nusient
transported to other parts of the body, thus cgusatis starvation.

15
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Fig. 17. Wall shear stress-height of constriction (g) profilesin a diver gent channel
4 Conclusions

The analyses of the results indicate that the paiselitude and height of constriction reduce th&lax
velocity and pressure but increase the radial wsloand wall shear stress. The occurrence of flow
separation in the radial velocity and pressurectires are due to some adverse flow situationauett s
points. Furthermore, the drop in the axial velodigs some physiological implications on the stenoti
patient.
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