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Abstract 
 

Oscillatory blood flow in convergent and divergent channels is investigated. The problem which involves 
a set of non-linear differential equations is handled analytically using the method of regular perturbation 
series solutions. Solutions are obtained for the velocities, pressure and wall shear stress, and are analyzed 
graphically. It is found that the variations in the pulse amplitude and height of constriction reduce the 
axial velocity and pressure but increase the radial velocity and wall shear stress. More so, it is observed 
that flow separation occurs in the radial velocity and pressure structures in the convergent and divergent 
regions respectively, when the height of the constriction are varied. 
 

Original Research Article 



 
 
 

Okuyade and Abbey; BJMCS, 14(6): 1-17, 2016; Article no.BJMCS.23221 
 
 
 

2 
 
 

Keywords: Oscillatory flow; pulse amplitude; constriction height; convergent and divergent channels. 
 

1 Introduction  
 
Oscillatory flow of an incompressible viscous fluid through convergent and divergent channels has 
applications in engineering and biological systems. 
 
The human cardiovascular system is infested by a number of diseases. An example of such is the 
atherosclerosis of the artery, which involves the hardening of the artery due to deposition of lipids (a generic 
name for esters) on its intimae/internal walls. The calcification of the lipids leads to lose of distensibility at 
the point of infection. Also, the progressive encroachment of the plague on the internal walls tends to block 
the passage of blood to other parts of the body. And, this imposes extra loads on the heart musculature [1,2]. 
To maintain the peripheral flow, the heart enlarges itself, and thus, increasing the amplitude of the pulse or 
pressure wave, which subsequently leads to abrupt rise in the flow variables [2,3]. More so, the 
encroachment of the plague leads to distortion of the tapered geometry of the artery to other forms, such as 
the idealized locally constricted channel (see [4,5]) and peristaltic channel (see [6,7]). This plague is found 
predominantly in the internal carotid artery which supplies blood to the brain; the coronary artery which 
supplies blood to the cardiac muscles, and the femoral artery which supplies blood to the lower limbs [1]. 
 
Rao and Devanathan [8] examined the fluid mechanical aspect of the pulsatile flow of an incompressible 
viscous fluid through tapered tube, locally constricted and peristaltic channels. They did not consider the 
flow behaviours in the regions before and after the peak of the stenos height, which are idealized as the 
convergent and divergent channels. Therefore, we are motivated to investigate the flow behaviours in these 
convergent-divergent channels using the same model.  
 
There are several reports in literature on the flow of an incompressible viscous fluid through tubes of varying 
cross-sections. For example, [9] examined the characteristics of pulsating flow in a confined channel, and 
observed that a given rate of mass flow is obtained in oscillating motion under an average pressure gradient 
as in steady flow; [8] investigated the pulsating flow of an incompressible viscous fluid in tubes of varying 
cross-sections using the perturbation series expansion solutions which they developed, and observed that 
flow separation occurs in the wall shear stress structure in all geometries; [10] studied the steady laminar 
flow of an incompressible fluid in a channel of varying width with permeable boundaries, and observed that 
the fluid absorbed at the wall has a strong influence in reducing the occurrence of initial flow separation. 
Furthermore, [11] considered the pulsating flow an incompressible viscous fluid through stenotic vessels 
using the Reynolds-averaged Navier-Stokes approach, and predicted a wall shear stress peak at the throat of 
the stenosis with maximum values observed distal to the stenos where the flow separation occurred; [12] 
examined the effects of MHD field on a two-dimensional nonlinear flow of a incompressible viscous 
electrically conducting fluid through convergent-divergent channels using the Pade-Hermite approximations, 
and observed that critical values of various parameters and types of singularities exist for different choices of 
MHD effects. Similarly, [13]  looked at the influence of heat and mass transfer on the flow of blood (which 
they considered as a Phan-Tien-Tanner fluid) through convergent tapering, divergent tapering and non-
tapered arteries for different parameters of interest, and noticed among others, that the shearing stress at the 
throat of the stenos increases with an increase in the external parameter, volumetric flow and Weissenberg 
number; [14] presented an analysis of blood flow through carotid bifurcating arteries that are clogged with 
fats using the one way fluid-solid interaction, and showed the effects of the Newtonian and non-Newtonian 
behaviours on the flow. 
 
The purpose of this paper is to address the effects of the amplitude of the pressure wave and height of 
constriction on the velocity, pressure and wall shear stress structures in the regions before and after the peak 
of the constriction using the perturbation series solutions of the form developed by [8]. 
 
This paper is organized in the following manner: section 2 is the methodology; section 3 gives the results 
and discussion, while section 4 holds the conclusions. 
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2 Methodology 
 
We consider the flow of blood in axi-symmetric convergent and divergent channels whose radii vary slowly 
with the cross-sections. The fluid viscosity is a function of temperature. With the loss of distensibility, the 
channels now have rigid walls. At the entrance of the tube, we assume the flow to be fully developed and 
pulsating with a prescribed periodic frequency β and time average volume flux Q. If (R, θ, X) and (u, v, w) 
are the polar cylindrical orthogonal coordinates and vector components, respectively, assuming the flow is 
symmetrical about the  X-axis, then for a two-dimensional flow situation the continuity, momentum and 
energy equations describing the flow are:  
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where ρ the density, p the pressure, υ  the kinematic viscosity of the fluid, and t  is the time. R=0 is the 

centre or symmetric axis of the tube; ( , )oR a X t= , which is an arbitrary function of X and t is the cross-

sectional radius of the tube; oa  is the characteristic radius of the tube, and t is the time. 
 

 
 

Fig. 1. The convergent and divergent models of the sclerotic artery 
 
The boundary conditions are: 
 

(i) w  0,  0
R
u∂= =

∂     
at   R=0                                            (4)    

  

(ii)  there is no tangential motion at the wall of the tube ie: 
 

( , ) 0ou a t = at ( , )oR a X t=                                           (5) 
 

(iii)  the flux across a cross–section of the tube is prescribed as:  
 

o
0 0

( , ) 2
θ 2 ψ  (1    ) 

oa X t
i tdR Rud k e

π βπ= +∫ ∫
                          (6) 

 

where oψ  is a constant, k is the amplitude of  the pulse which is  assumed to be small, and β is the 

frequency of oscillation. 

R

x
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We eliminate the pressure terms in equations (2) and (3) by taking the 
R

∂
∂

 of equation (2) and 
X

∂
∂

of 

equation (3), then subtracting the first result from the second one, we have 
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Also, the pressure expression in the axial direction can be obtained from equation (3), as 
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 Introducing the stream function ψ and vortices Ω, respectively i.e. 
 

1 1
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into equations (7) and (8), we have 
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with the boundary conditions as  
 

0,ψ = 1
0,

R X

ψ∂ =
∂

2

2 2

1 1
0

R R R R

ψ ψ∂ ∂− =
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at   R = 0                             (13) 

 

0,
R

ψ∂ =
∂

( )1 i t
o keβψ ψ= + at ( ),R a X t=                                (14) 

 
More so, we assume that the cross–section of the tube in the model vary in the axial direction, and for which 

we take a(X, t) = sao   (ε oaX , t), )),(1(0 txfRr ε+= ,  0   ≤  r   ≤ 1, 0   ≤  x   ≤ 1 where s is an 

arbitrary function of X; a is the variation in the r along the axial direction; 10 <<=<
L

aoε  is a small 

dimensionless parameter that characterizes the slow variation in the channel radius; L defines the channel 
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characteristic length; 0=ε corresponds to a tube with constant radius. As ε increases from zero the 

variation of ψ  in the axial direction depends upon  Xε  instead of X. 
 
Similarly, introducing the following non-dimensionalized variables  
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where Re is the Reynolds number of the flow, η  is a dimensionless number for the frequency of oscillation, 

T is the dimensionless time, ε is the height of constriction, φ  and ω  are the dimensionless  stream function 

and  vortices respectively; into equations (8) -  (12) respectively, we have  
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Equation (19) tends to suggest that the pressure field is of order
ε
1

. Also, the O(ε)2  terms are assumed to be 

very small, therefore, they are neglected. 
 
Similarly, the wall shear stress is given as 
 

Ω= ρυτ w           (see [8]) yielding 
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The boundary conditions become: 
 

1
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Now, we shall seek for perturbation series solutions about the small parameter ε. In particular, we shall use 
the form developed by [8], and which is of the form: 
 

( ) ( ) ( ) ( )( )1 1 ...o oiT iTf f ke f f ke fε= + + + +                             (23) 

 

where nf  represents ω  andφ .   
 
Substituting equation (23) into equations (17), (18), (21) and (22), we have:  
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The analyses of the solutions show that the non-steady part is very insignificant. 
 
By exhaustive algebraic operations, the solutions of the zeroth order equations (23) - (26), (29) - (32) and 
(35) - (38), are: 
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where Io (λr), I1(λr), I2 (λr), Io(λs), I1(λs) and I2 (λs) are the modified Bessel function of order zero, one, two, 
respectively. It is worthy to note that the solutions to equations (31) and (33) as expressed in equations (45) 
and (47) are culled and developed from [8], p. 206. 
 

Furthermore, the geometries under consideration are: the convergent channel / 2xs e−= , and divergent 

channel  / 2xs e= . 
 

3 Results and Discussion 
 
We considered the flow of blood through a stenos artery with emphasis on the effects of pressure wave 
amplitude and height of constriction on the overall flow structure in the regions before and after the peak of 
the constriction. These two regions under consideration approximate the convergent and divergent channels, 
as shown in Fig. 1. The analyses of the results show that variations in the amplitude and height of the 
constriction have tremendous effects on the flow structure. To this end, using Maple 12 computational 
software and the following physically realistic parameters: T=π/4; λ=2; k = 0.01, 0.03, 0.05, 0.07; ε = 0.01, 
0.03, 0.05, 0.07; Re= 10, 100, 500, 1000 we obtained the results shown in Figs. 2 – 17. These figures show 
the profiles of the computational results for the velocities pressure and wall shear stress. The profiles show 
that increase in the amplitude decreases the axial velocity and axial pressure (see Figs. 2, 3, 6 and 7), but 
increases the radial velocity and wall shear stress (see Figs. 4, 5, 8 and 9). Blood flow in a normal artery is 
laminar and Poiseuille. But due to the stenosis, the arterial channel is blocked moderately or severely. For 
this, the heart enlarges itself to maintain the peripheral flow. The enlargement of the heart leads to increase 
in the amplitude of the pulse or pressure wave. And, the increase in the amplitude energizes the flow 
variables in the direction of the increase, which in this case, the radial velocity and wall shear stress. This 
accounts for what is seen in Figs. 4, 5, 8 and 9. On the other hand, the increase in the amplitude reduces the 
axial velocity and axial pressure as seen in Figs. 2, 3, 6 and 7. This could be due to the increase in the radial 
velocity. 
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Fig. 2. Axial velocity-amplitude (k) profiles in a convergent channel 
 

 
 

Fig. 3. Axial velocity-amplitude (k) profiles in a divergent channel 
 

 
 

Fig. 4. Radial velocity-amplitude (k) profiles in a convergent channel 
 

Furthermore, the profiles show that the height of the constriction decreases the axial velocity (see Figs. 10 
and 11), while it increases the axial pressure and wall shear stress (see Figs. 14, 16 and 17). As said above, 
blood flow in the artery is laminar, Poiseuille and fully developed. It moves with the velocity with which it is 
released from the heart. As it gets to the region of constriction, the flow pattern changes. The blockage 
caused by the stenos reduces the axial pressure as shown in Fig. 10 and Fig. 11.  
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Fig. 5. Radial velocity

Fig. 6. Pressure

Fig. 7. Pressure
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Radial velocity-amplitude (k) profiles in a divergent channel 
 

 
 

Pressure-amplitude (k) profiles in a convergent channel 
 

 
 

Pressure-amplitude (k) profiles in a divergent channel 
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Fig. 8. Wall shear stress-amplitude (k) profiles in a convergent channel 
 

 
 

Fig. 9. Wall shear stress-amplitude (k) profiles in a divergent channel 
 

 
 

Fig. 10. Axial velocity-height of constriction (ε) profiles in a convergent channel 
 

More so, the changes in the geometrical configuration affect the flow. In particular, for the convergent 
channel, as the geometry thins down exponentially, the pressure factor increases, and subsequently, the 
velocities and wall shear stress increase. It is also seen that in the divergent channel whose geometry 
increases exponentially, the radial velocity, axial pressure and wall shear stress are increased. The increase 
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could be due to the influence of the flow situations in the convergent channel. All these account for the 
results in Figs. 13, 14, 16 and 17.  

 

 
 

Fig. 11. Axial velocity-height of constriction (ε) profiles in a divergent channel 
 

 
 

Fig. 12. Radial velocity-height of constriction (ε) profiles in a convergent channel 
 

 
 

Fig. 13. Radial velocity-height of constriction (ε) profile in a divergent channel 
 

Similarly, a special feature called the flow separation occurs in the radial and pressure structures at r ≤ 0.3 
and r ≤ 0.46 for T=π/4, respectively (see Figs. 12 and 15). Initially, the radial velocity and pressure increase 
with the height of constriction drop at these points, and then the flow pattern changes such that these 
variables decrease as the height of constriction increases. The occurrence of the flow separation (which is in 
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agreement with [8]) is due to the adverse flow conditions at such points. [8] adduced that it is due to viscous 
effects.  

 

 
 

Fig. 14. Pressure-height of constriction (ε) profiles in a convergent channel 
 

 
 

Fig. 15. Pressure-height of constriction (ε) profiles in a divergent channel 
 

 
 

Fig. 16. Wall shear stress-height of constriction (ε) profiles in a convergent channel 
 

The overall analyses show that the axial velocity drops as the pulse amplitude and height of constriction 
increase. This has some health implications on the stenotic patient. The drop in the axial velocity leads 
subsequently to a drop in the rate at which the rejuvenated blood which bears oxygen and food nutrients is 
transported to other parts of the body, thus causing cells starvation. 
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Fig. 17. Wall shear stress-height of constriction (ε) profiles in a divergent channel 
 

4 Conclusions 
 
The analyses of the results indicate that the pulse amplitude and height of constriction reduce the axial 
velocity and pressure but increase the radial velocity and wall shear stress. The occurrence of flow 
separation in the radial velocity and pressure structures are due to some adverse flow situations at such 
points. Furthermore, the drop in the axial velocity has some physiological implications on the stenotic 
patient. 
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